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Abstract: - Image calibration is the very first step in the low-level vision process, making it possible to reliably
exploit geometrical information from images. In this paper, we address the problem of calculating and com-
pensating camera lens distortion using a fast evolutionary algorithm. The advantages and limitations of this
method are compared with classical calibration methods.
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1 Introduction
Most commercial cameras and lenses deviate from
the ideal pinhole model, due in particular to wide
angle lens design which generates non-linear image
distortion. Calibrating and correcting geometrical
distortion is an essential prerequisite to the majority
of 3-D reconstruction methods which are based on
projective geometry [9]. New sensors with increasing
image resolution enable wider viewing angles with-
out loss in scene resolution: this opens the way to new
vision applications that require wider angle lenses
within the same cost constraints. Low-distortion wide
angle lens technology may be extremely costly, so
that using cheaper lenses associated with efficient
distortion compensation is becoming an increasing
economical stake.
In practice, camera and lens manufacturers do not
give accurate enough geometrical information.
Because of the variability of optical and geometrical
characteristics in a production line, these parameters
would have to be measured individually on each cam-
era/lens system and lead to an unacceptable cost
overhead [14]. 
In the brief review of camera calibration techniques
given in section (3), we note a lack of flexibility of
most existing methods, some potential problems due
to their initialisation steps and their susceptibility of
getting trapped into a local minimum. As an answer
to these difficulties, we propose a new approach
based on an evolutionary algorithm.
The implementation of our method will be presented
in section (4), and calibration results will be given in
section (5). These results are compared to those

obtained using Tsai’s calibration method [19].
Among the various intrinsic parameters we are esti-
mating, we pay particular attention to the location of
the principal point, a fundamental data in many
reconstruction algorithms.

2 The calibration parameters
The parameters of an ideal pinhole camera are classi-
cally divided into extrinsic and intrinsic parameters.
The extrinsic parameters represent the location and
rotation of the camera in space, whereas the intrinsic
parameters refer to the camera internal model. The
first internal parameters are the focal length, the prin-
cipal point coordinates and the horizontal/vertical
scale factor.
As discussed above, this projective model is usually
not accurate enough in many applications, and image
distortion has to be considered. Image distortion con-
sists of non-linear image deformations originating
from optical lens imperfections, that may come from
the inevitable flaws in lens design but also to optical
and mechanical imperfections (glass quality, curva-
ture, misalignment of optical elements, etc.).
Typically, the image distortion model can be decom-
posed into two types :

- the radial distortion, whose components are
expressed as:

where ,  and  are the radial coefficients,
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 are the centred image points coordinates, and 
the radial distance from the image centre :

 is the horizontal scale factor.

- the tangential distortion resulting from misalign-
ment of the lenses:

where ,  and  are the tangential coefficients.
The global distortion is the sum of radial and tangen-
tial distortion:

(1)

(2)

3 Related works
Most calibration methods handle both intrinsic and
extrinsic parameters. A difficulty with these methods
derives from the non-independence of internal and
external parameters, which can lead to high estima-
tion errors on internal parameters [5,20]. Trouble also
comes when there is no suitable metrology equip-
ment available, given that these methods require
accurate knowledge of 3-D coordinates of scene
points. In addition, many applications do not aim at
performing a complete 3D reconstruction of the
scene, and in these cases there is no need to recover
the extrinsic parameters. An example is the obstacle
detection systems we are developing in our labs,
where the goal is to obtain fast mobile robot reactions
in emergency situations rather than an accurate scene
reconstruction.
As a consequence, in this paper we will be only inter-
ested in methods to estimate distortion parameters in
conjunction with internal parameters. These methods
are non-linear. Of course, it is still possible to use the
results of intrinsic parameter estimation as a first step
to further extrinsic parameters determination tech-
niques. Unlike full calibration techniques, we do not
need to measure the 3D location of reference points
or camera location, and thus we are not sensitive to
errors on these measurements. We only need to

recover projective geometry invariance properties,
which have been lost due to distortion. The tradi-
tional approach is then to define a cost function
which will represent the deviation to invariance prop-
erties, then to minimise this cost unction in order to
obtain the distortion parameters. Various calibration
methods have been designed, each according to one
particular property. As an example, some of them use
the orthogonality of 3 vanishing point vectors corre-
sponding to 3 orthogonal lines in the scene [7]. Other
methods are based on the preservation of the cross-
ratio of 4 points along a line [15], others use the exist-
ence of a planar mapping between two views of a
planar object [15], etc.
It is probable that the most widely used techniques
are those relying on the basic invariance property
which states that if there is no distortion, every
straight line in the scene corresponds to a straight line
in the image. An algorithm based on this property
was first introduced by Duane C. Brown in 1971, as
“the plumb line method”. This method aims at solv-
ing an equation system whose unknowns are the 
parameters of the distortion function. Every new line
in the scene introduces two additional parameters

 which can be combined to the distortion
parameters in a new expression:

 

where  and  are the coordinates in the ideal image.
Then the two terms  and  are substituted with
their expressions (1) and (2), to get a new expression
which can be linearised using Taylor’s expansion
from an initial approximation. A set of lines enables
to construct a resolvable system of  equations with

 unknowns. Many recent techniques [5,16,21] can
be considered as derivatives of the plumb line
method. Most of them use a cost function, which
gives a null value when all points are perfectly
aligned, and a value increasing with line distortion.
The aim is then to minimise this cost function using a
non-linear least square minimisation method [1], as
Lagrange's [12] or the Levenberg-Marquardt method
[5, 18]. This last step can be enriched with outliers'
elimination to increase robustness and accuracy of
the estimation [18]. One of the drawback of the
plumb line method and its relatives is that they do not
yield any estimation of the focal length, and the esti-
mation of the principal point coordinates are not very
accurate. Furthermore, it is remarkable that in the
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absence of information on camera parameters, results
turn out to be instable [20]. One can overcome this
difficulty and obtain stable and reasonably accurate
results if camera motion is a pure rotation [14,15].
However, this may not always be materially possible.

These optimization methods are based on local lin-
earisation of the non-linear problem, then reducing
the calibration problem to a sequence of (possibly
constrained) linear problems. Such procedures
require well-chosen initial estimates in order to con-
verge to a global minimum. Without a convenient
choice, the solution may diverge or get trapped into a
local minimum.

4 Calibration using an evolutionary 
algorithm

This section presents our alternative approach to the
conventional calibration methods by using an evolu-
tionary algorithm (EA). EAs are recognized for their
capability of avoiding the risk of getting trapped into
a local minimum [8]. In addition, they do not require
an initial estimate to start the optimization process.
In fact, our main motivations for elaborating a cali-
bration method based on artificial evolution are given
by the following general advantages of EAs among
other optimization methods:

- the calibration method is expected to be autono-
mous. EAs generally do not require to choose a
convenient initial estimate. In fact, EA initialization
consists in generating a random population of
vectors.

- the method should be robust with low risk of local
minimum trapping. EAs are extremely robust to
complex cost landscapes with multiple local min-
ima thanks to parallel domain exploration using a
large population of vectors.

- it has now become simple, fast and easy to imple-
ment EA methods in real-world application, thanks
to several public domain genetic libraries (EO,
Galib, DREAM...) and, perhaps even more impor-
tantly, to recent user-friendly development tools
such as EASEA [3, 4] which is able to exploit any
of these libraries and produce efficient and clean
source code, leaving the user with the task of writing
his own application-specific cost (fitness) function

and some parameter adjustment.

- Writing this cost/fitness function turns out to be the
main difficulty when designing an EA in the
EASEA framework. As a consequence our calibra-
tion method is expected to be extensible. This is
really an interesting property in a computer vision
laboratory where everyone may have to modify the
optimization problem with the application needs or
when replacing the type of lens (high distortion lens,
panoramic camera...).

4.1 Background

EAs have been introduced in the 60s, nearly simulta-
neously in the United States (John H. Holland) and in
Germany (I. Rechenberg). They are efficient stochas-
tic optimization tools based on the process of natural
selection inspired by Darwin's theory on natural evo-
lution. Basically, they consist in initializing a random
population of potential solutions of the problem to be
solved. The aim is to maximize (or minimize) a fit-
ness (or cost) function by evaluating all individuals in
the population and applying stochastic genetic opera-
tors, mainly crossover (recombination of two
individuals) and mutation (noise on a single individ-
ual). A selection operator tends to eliminate the less
performing individuals so that the population gradu-
ally concentrates into the best solutions of the
problem.
In practice, the combination of mutation and cross-
over operators enables to preserve genetic diversity
and enables extensive exploration of the search
space. The fitness function concentrates the user’s
knowledge of the problem. It is a real value function,
whose variables are the code of an individual.
Usually, the various parameters of the EA are set in
an empirical way (initialisation, crossover rate, muta-
tion rate, selection method...). Some recent statistical
studies investigate methods to derive these parame-
ters from extrapolation of parameters which have
already been defined for similar problem types [6].

4.2 Implementation

Like many calibration methods (section 3) we choose
to consider the collinearity property, which states that
every straight line in the scene has to correspond to a
straight line in the image. This section presents the
various elements of a calibration method designed
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from this property and based on an EA.
Input data
From a practical standpoint, we use a calibration pat-
tern (Fig. 1), which enables us to extract a square grid
of 5x5 regularly spaced image points, using sub-pixel
detection. To this end we chose the Harris character-
istic point detector for its good precision, as
mentioned in comparative studies relative to interest
points detection [12]. This enables us to compose sets
of 5 points which should be straight if there was no
distortion. These sets of points are the data which will
be processed by our algorithm.
Coding
The population of our EA is composed of a popula-
tion of vectors, whose components  are the nine
distortion parameters:

 
These parameters are coded as real values (conform-
ing to the “evolutionary strategy” technique [11]. The
bounds on the search space are chosen large enough
to cover the whole set of admissible values.
Fitness
In order to evaluate an individual, we use , its vec-
tor of distortion parameters to correct the input data.
To obtain a measure of the quality of the correction,
we consider every set of image points which should
be on a straight line. For each set of points, a straight
line is approximated using a least square method and
then we add the square of the distance of every point
to the estimated straight line. Next, the results we
obtain for each set of points are added together to
obtain our cost function (distortion measure). The fit-
ness function (to be maximised) is derived from the
reverse of this cost function.
Crossover
We use the classical barycentric crossover method,
and in particular we create two new vectors  and

 from a linear combination of two parents,  and
:

where  is an uniform random number chosen in the
interval .
Mutation
To generate a new individual we add a white gaussian
noise to a selected vector. The standard deviation of

the gaussian distribution has a fixed, arbitrary con-
stant value.
Overall implementation
The algorithm has been implemented using the
EASEA evolutionary specification language [3], in
conjunction with GAlib (Genetic Algorithm library),
a public domain C++ library of optimization tools.
The various algorithm parameters (mutation and
crossover probabilities, population size, selection
method...) have been set in an empirical way.
To ensure a good balance of robustness and precision,
we hybridise the evolutionary strategy with a steepest
gradient method.

5 Experimental results
In order to study how the results depend on the gen-
eration number, many independent experiments have
been done, using an arbitrary but fixed population
size and an increasing number of generations. Fig.2
to Fig.5 plot every results value according to the
number of generations. Our camera was equipped
with a 6.5 mm focal length wide-angle lens, and a
sensor size equal to 2/3 inches.
Fig.2 illustrates how the cost function decreases with
the number of generations. One interesting property
of this approach is that a coarse result is obtained very
quickly, and gets refined with time. The results for
the different distortion coefficients are presented on
Fig.3 to Fig.5, Their stability seems to be very close
to their effective contribution in the value of the over-
all distortion.
The results concerning the principal points coordi-
nates are presented on figure 3. The plots illustrate
that the results are not very stable. However, the
instability range can be considerably reduced if we
consider only the minima of the cost function (20%
best values) which is plotted on Fig. 2. It seems that
this instability phenomenon is a distinctive feature of
the plumb line method, where the principal points
coordinates have been proved to be closely linked to
the decentring distortion coefficients [2].
As a comparison, we have measured optically the
coordinates of the principal point using a laser beam
autocollimation method [2]. We obtained a location

 close enough to our results.
The autocollimation method seems to give more sta-
ble results (less than one pixel), but this ought to be

vi

vi a1 a2 a3 p1 p2 p3 x0 y0 k, , , , , , , ,( )=

vi

vn1
vn2 v1
v2

vn1 Kv1 1 K–( )v2+=

vn2 1 K–( )v1 Kv2+=

K
0 1,[ ]

x0 y0,( ) 370 289,( )=



page 5

confirmed experimentally with other lens types.
If we consider the quality of the distortion correction,
our results are quite satisfactory: after image correc-
tion using our best parameters set, the cost function
was about 1,16 and the maximal distance of every
calibration point to the estimated straight line was
measured as 0.64 pixel. As a comparison the results
we obtained using Tsai’s algorithm [19], one of the
most widely used algorithm for camera calibration,
correspond to a cost function equal to 6.15 (without
any distortion correction the cost function was equal
to 378.3).
Other experiments have been conducted using a cali-
bration pattern enabling the extraction of a grid
composed of 10x10 characteristic points. This
increasing number of input data did not result in any
improvement on the results, whereas the computation
time increased drastically (from a few seconds to
many minutes).

6 Conclusion
We have presented a calibration procedure based on
an evolutionary algorithm (evolutionary strategy) to
perform camera calibration from a single image. The
theoretical advantages of the proposed method:
autonomy, robustness and simplicity have been
experimentally confirmed, and the quality of the dis-
tortion correction turns out to be quite satisfactory.
Further work will consist of experimenting the exten-
sibility of the algorithm using other lens types.
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