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Abstract

We propose two algorithms to match edges in a geometrically-imprecise graph to geometrically-

precise strong boundaries in an image, where the graph is meant to give an a priori partition of the image

into objects. This can be used to partition an image into objects described by imprecise external data,

and thus to simplify the segmentation problem. We apply them to the problem of registering cadastre

data to georeferenced aerial images, thus correcting the lack of geometrical detail of the cadastre data,

and the fact that cadastre data gives information of a different nature than that found in images —fiscal

information as opposed to actual land use.

I. INTRODUCTION

Partitioning an image into its constituent real-world objects is, because of the prior semantic

knowledge required, and because of the interaction between the partitioning and the image

interpretation, an extremely difficult task which has long been a goal of image analysis.

For some practical applications, a sufficiently good result can be obtained by using external

data which indicates the location of significant objects in the image. For example, in a remote

sensing context, the cadastre graph —which divides land into plots, and which provides own-

ership and fiscal information— can be taken as a rough approximation to a partition of land



into fields. The correspondence is, however, not exact because field edges —land use— need

not follow cadastre edges —land ownership—, because several adjacent plots may contain the

same crop and therefore be a single field, and because a single plot can be divided into several

fields, all with the same owner.

The first two problems —geometrical imprecision, and cadastre edges without a corresponding

land use edge— can be solved by a registration procedure, whereby the cadastre graph and a

graph containing the image’s salient edges are matched. From correctly matched elements we

can obtain the precise geometry corresponding to geometrically imprecise cadastre elements,

thus addressing the first problem. As for the second one, if there is a cadastre edge between two

plots containing the same crop, the algorithms will not be able to find in the image any match

for this edge; if this is the case, we can infer that the two plots have the same crop.

Registration of cadastres to images has been viewed as a non-rigid registration problem. In

non-rigid registration problems, the goal is to find the transformation or deformation within a

class that best converts an image to the reference image; matching is then trivial. Transformation

classes are usually a subset of C2 functions R
2 → R

2. For example, Viglino and Guigues [1]

match cadastre graphs to terrain edges by finding the best global transformation from one to the

other among the class of polynomial transformations of a certain degree. See Cachier et al. [2]

and Goshtasby et al. [3] for some reviews of nonrigid image registration methods; as they say,

most of the work in this domain focuses on medical imaging. Chui and Rangarajan [4] propose

a non-rigid registration method for sparse sets of points which could be used in some instances

of graph matching problems.

These approaches assume that the initial misregistration is due to sensor-induced deformation,

to acquisition errors, or because the relative orientation of the input data is unknown. In our case



Fig. 1. Typical input data (close-up). Terrain image, with cadastre edges superimposed. Note that some image edges do not

have corresponding cadastre edges, and vice versa, and that those that do have slightly different traces.

the image is georeferenced, so the third problem can be ignored, and the initial misregistration

is not due to an acquisition error or a sensor-induced deformation, but rather to the two graphs

representing data of different nature (see Fig. 1 for a detailed view of typical input data). We

also want the cadastre to register onto image edges as much as possible. More precisely, we

want to locally modify the cadastre graph so that its spatial structure is preserved (that is, we do

not modify which faces are adjacent to which in the planar representation) while incorporating

the geometric details of corresponding salient edges in the image. To the best of the authors’

knowledge, this specific problem has not been previously dealt with.

We approach this as a graph matching problem, like Hivernat and Descombes [5] but with

suitable modifications: in this context we have two graphs representing the same physical

reality, and the goal is to match the edges and nodes that correspond to the same part of that

reality [6], [7]. In our case, we use a multi-scale segmentation of the image to obtain a graph

representation, whose edges separate homogeneous image regions and are weighted according



to the dissimilitude between these regions. In doing this, we assume that all significant image

edges —at least, all image edges that should be matched with the given cadastre edges— exist

in the multi-scale segmentation from which we obtain the graph representation; by making this

segmentation sufficiently fine, we can be fairly confident that this is the case. Our experiments

confirm this.

There does not exist a scale of analysis for which a single-scale segmentation would yield

field edges. By explicitly working with an oversegmentation we avoid this problem. However,

this also makes the matching problem asymmetrical, since to each element in the cadastre graph

there correspond many elements in the image segmentation (on the order of 1 cadastre element

to 20 segmentation elements). Existing graph matching algorithms, such as those described in [8]

or [9], expect the graphs to be isomorphic; although provisions are made for non-isomorphisms

caused by noise or other defects, usually by adding a null element or label to which non-

matchable elements can be associated, these algorithms are not designed to handle such large

asymmetries as we have here.

We propose two approaches for solving this matching problem:

The first approach, which was sketched in [10], finds the best match between edges in the

cadastre graph and segmentation edges in the image, using simulated annealing. This is described

in section III. This edge-based method preserves well the face structure of the cadastre graph,

but does not always follow salient image edges since auxiliary straight edges must be added to

the solution.

The second approach, which was first described in [11], finds a near-optimal match between

faces in the cadastre graph and homogeneous regions in the image. This is described in section IV.

We propose two variants, one using probabilistic relaxation for the optimization, and another



using simulated annealing. This region-based method always follows salient image edges, but

does not preserve the face structure of the cadastre graph so well.

The best algorithm, in terms of quantitative evaluation, is the region-based method, using

probabilistic relaxation for the optimization. Tests show a 32.2% reduction in the average distance

between the cadastre and a ground truth (and up to 43.7% when using a distorted cadastre as

input). Improvements are slightly lower with the edge-based method, and even lower with the

region-based method with simulated annealing. More important than this quantitative improve-

ment is the fact that the registered portions of the resulting graph follow the edges of the image

—exactly, in the case of the region-based method— which will allow us to perform statistical

analysis of whole regions, without noise from adjacent regions. Although we apply this method

to the registration of a cadastre graph to an aerial image, it can also be used in other contexts. For

both algorithms, a score for each cadastre edge is obtained. These registration quality measures,

described in sections III-H and IV-D, can be used to determine which cadastre edges do not

actually exist in the image, and may need to be removed for further processing.

In this article we present in detail the edge-based method in section III, and the region-based

method in section IV, together with a complete quantitative evaluation in section V, and a

comparison and conclusion in section VII. Section II describes the procedure used to obtain the

initial graphs from the image and cadastre data; this procedure is common to both algorithms.

II. IMAGE OVER-SEGMENTATION AND INPUT GRAPHS

Both registration methods presented here are set as graph matching problems. That is, they try

to match edges, nodes, or faces from a graph representing the image with edges, nodes, or faces

from a graph representing the cadastre. For each match, the geometry of the image element is

then transferred to the corresponding cadastre element. We need therefore to start with graph



representations for both the cadastre and the image.

The cadastre input is already a graph C = (EC , VC), a planar one, with graph edges separating

adjacent plots, graph faces corresponding to plots, and graph nodes where three or more adjacent

plots meet. We simplify this graph using mathematical morphology to remove very thin faces

(around 1 pixel wide) that might confuse the algorithms.

We also create a graph (the terrain or segmentation graph) representing the salient edges

in the image and their geometry. We need to extract the topology and geometry of the salient

edges in an image, and a measure of their saliency. A simple method would be to weight each

segmentation edge in a watershed segmentation with the module of the image gradient in that

edge. However, this measure of edge saliency would be local and single-scale, and therefore not

satisfactory, since meaningful structures may appear at different scales of analysis [12].

Several authors have proposed multi-scale algorithms to solve this. We use Guigues’ scale-sets

algorithm [13] because it makes the segmentation criterion and the scale parameter λ explicit:

For each λ this algorithm gives a partition of the image p(λ); the set of values of λ for which

a region exists in p(λ) turns out to be an interval, [λmin, λmax[.

We flatten these results to obtain the terrain graph; that is, we build a weighted graph, the

terrain graph T = (Vt, Et, w) (w is the weight function), whose edges follow the boundaries of

the regions given by p(·) (these graphs have a geometrical component: their edges and vertices

exist in a space such as R
2 or Z

2, and not only their topology but also their geometry is

considered). The weight of an edge is calculated as follows: We find for each edge e ∈ Et the

highest λmin of all the regions whose boundary contains e, λmin(e). To improve processing time,

we discard edges with small λmin (in this implementation, the 30% of edges with smallest values

of λmin). We sort the N remaining edges according to their values of λmin, and attribute each



edge with an apparition weight w, which is 1 for the first edge (that with highest λmin) and

decays exponentially for the remaining edges. The apparition weight is a multi-scale, non-local,

saliency measure. Fig. 2 shows the terrain graph corresponding to the image of Fig. 1.

Fig. 2. Terrain graph T of the image in Fig. 2. Graph edges with higher weights are shown darker.

The region-based registration algorithm works with the duals of the terrain and cadastre graphs

T and C, T̄ = (ET̄ , VT̄ , w) and C̄ = (EC̄ , VC̄) respectively. The weight of an edge in T̄ that

links two vertices v̄1 and v̄2 is that of the edge in T separating the dual faces of v̄1 and v̄2 (see

Fig. 3).

Fig. 3. An image, its terrain graph T , and its dual terrain graph T̄ . Darker edges have higher weights.

This graph matching is asymmetric: the terrain graph contains many more edges (terrain

edges) than the cadastre graph, but they are shorter. Typical values are 1000 terrain edges for 50



cadastre edges. Similar ratios hold between faces of the terrain graph and the cadastre graph. For

the edge-based algorithm, we may assume that each terrain edge matches at most one cadastre

edge, and that each cadastre edge may match several terrain edges. Most terrain edges will not

have a match. Note that while most graph-matching algorithms can handle a certain amount

of unmatched edges, they are usually not designed with such a degree of asymmetry in mind.

Similarly, for the region-based algorithm, we may assume that each terrain face matches at most

one cadastre face, and that each cadastre face may match several terrain faces; however, in this

case all terrain faces will have a match.

III. EDGE-BASED REGISTRATION ALGORITHM

The desired result from the edge-based registration algorithm is a match from each edge in

the cadastre graph C to a chain of edges in the terrain graph T , that is, to an ordered sequence of

edges, such that each edge has a common vertex with the next edge in the sequence. However,

internally the algorithm manipulates a different kind of solution: A match from each terrain edge

to a cadastre edge.

In section III-A we formalize this latter representation of a solution. In section III-D we study

how to convert from this to the first representation. We can evaluate the quality or fitness of

a match (section III-E) and therefore use an optimization algorithm to find the optimal one.

To avoid the combinatorial explosion associated with this kind of problem, we use simulated

annealing [14] to find a near-optimal solution. For that we also need a way of exploring the

solution space (section III-B), and an initial solution (section III-C).

However, we have found that, in order to register the cadastre onto image edges and at the

same time preserve the spatial structure of the cadastre graph, we have to process separately the

areas near cadastre nodes and the rest of the problem. This is because the cadastre and terrain



graphs are not isomorphic near cadastre nodes, in most cases, and therefore forcing registered

cadastre edges to strictly follow image edges modifies in most cases the spatial structure of

the cadastre graph. To solve this problem, we first apply the simulated annealing optimization

to the general case, and then an ad-hoc method that adds straight edges to the terrain graph

(section III-G) for the areas near cadastre nodes.

In the description of the edge-based registration algorithm, α1, . . . , α6, Nr, and p⊥ are tuning

parameters (see section V-A and table III).

A. Solution representation

We represent a solution to our registration problem as a relation between cadastre edges and

terrain edges. In what we call the backward representation, we label each terrain edge with its

corresponding cadastre edge, or with ⊥ to indicate that it is unmatched (see [5] for a similar

representation, although they use it for Markov modeling and in a situation where the ⊥-label

is rarely used). We only allow labeling a terrain edge ei with cadastre edges that are close to it,

N(ei),

N(ei) = {e ∈ Ec : min
z∈trc ei

z′∈trc e

‖z − z′‖ < ε}, (1)

(where the trace of a graph edge or node, trc x, is the set of pixels that correspond to that

edge or node in image space) and do not allow labeling with ⊥ for terrain edges with only

one near cadastre edge: this disables the optimization process for these edges, leaving only the

shortest-path search described in section III-D. A backward solution S then, maps each terrain

edge ei to an element of Nx(ei) where

Nx(ei) =



















N(ei) ∪ {⊥} if |N(ei)| 6= 1,

N(ei) if |N(ei)| = 1,

(2)

and |X| is the notation for the cardinal of a set X .



B. Finding a similar solution

In order to solve a problem using methods such as steepest-descent, simulated annealing or

genetic algorithms, we need a way to find solutions which are “close” to a given solution. This

is the mutation or neighborhood operator (for genetic algorithms, we also need a crossover

operator).

In this registration algorithm, we can obtain one neighbor solution S ′ from S as follows: A

number Nr of terrain edges are selected —however, edges which have only one or no cadastre

edges nearby are never selected (Eqs. (1)–(2))— and a new random label is given to each selected

edge. The new label is ⊥ with probability p⊥, and the remaining labels are equiprobable:

p (S ′(ei) = ⊥) = p⊥

p (S ′(ei) = ek) =
1 − p⊥
|N(ei)|

, for all ek ∈ N(ei).

(3)

C. Finding an initial solution

We also need to find an initial solution S0. We label each terrain edge with the cadastre edge

that is closest to them in the sense of the average distance d̄ (Eq. (5))

S0(ei) = argmin
ek∈N(ei)

d̄(ei, ek).

Other options include starting with the null solution S0(ei) =⊥, or with a random solution.

D. From backward to forward representation

Using the backward representation it is easy to find solutions similar to a given one (section III-

B) and to create initial solutions (section III-C). But this is not the desired output representation,

and it is difficult to calculate its fitness. Therefore, we need to convert from the backward

representation to a forward representation, in which we map each cadastre edge to a —possibly

empty— oriented chain of terrain edges, as follows:



First, for each cadastre edge ek ∈ Ec, to which the terrain edges mk = {ei ∈ Et : S(ei) = ek}

are mapped, we create a graph Tk which contains

• the terrain edges mk and the nodes at their ends,

• the cadastre nodes n0 and n1 at the ends of ek,

• N0, the set of terrain nodes close to n0, and

• N1, the set of terrain nodes which are close to n1.

After that, we attribute each edge e ∈ Tk with a weight wp (the path matching weight) that

depends on its length `(e), its apparition weight we, and an average “distance” d̄(e, ek) between

it and ek, as

wp = α1`(e)(1 − we) + α2`(e)d̄(e, ek), (4)

with the average non-symmetric “distance” d̄ between a terrain edge et ∈ Et and a cadastre edge

ec ∈ Ec defined as

d̄(et, ec) :=
1

| trc(et)|

∑

zt∈trc(et)

min
zc∈trc(ec)

‖zt − zc‖. (5)

In that way, we favor registered edges that follow salient image edges and that don’t stray too

much from the cadastre edge they correspond to.

Note that Tk contains several connected components (some of them composed of a single

node). We then create a graph T ′
k which contains Tk and additional straight edges (which we

call connecting edges), which join every two connected components in Tk by their closest nodes.

We attribute each of these additional straight edges e with a path matching weight wp = α3`(e).

Finally, using the path matching weight as the “length” of an edge, we find on T ′
k the “shortest”

path sk from any node in N0 ∪ {n0} to any node in N1 ∪ {n1} using Dijkstra’s algorithm [15],

[16]. The forward solution for S is then the mapping of each cadastre edge ek to the shortest

path sk obtained with this process. This is shown in Fig. 4.



Thanks to the connecting edges, there is always such a path; however, the path matching

weight for connecting edges is high, to discourage their use. Note that since we allow these

shortest paths to start and end not only on the endpoints of cadastre edges (n0, n1) but also on

nearby terrain nodes (N0, N1), this will, as intended, not register the cadastre in the areas near

cadastre nodes.
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Fig. 4. From backward to forward solution, for a simplified example. 1: a cadastre edge ek. 2: terrain graph Et (edge weight

is shown by line darkness, “×”s show the vertices of e k’s trace). 3: subgraph Tk, with N0 and N1 (hollow dots), and n0 and

n1 (solid dots). 4: shortest path, including connecting edges. Note that this process is run at each iteration of the annealing

algorithm —different backward solutions may give different T ks and possibly better shortest paths.

There is some similarity between edge linking —the process by which a set of pixels given

by an edge-detection algorithm is converted to a set of curves— and the problem that the

transformation described in this section solves. Important differences warrant the development

of this new method: First, only a small portion of the original edges are used in the resulting

path; the original set of edges is more mesh-like than line-like. Second, edges are weighted, and

it is only through their weighting that a path can be found among the many edges (but see [17]

for a fuzzy pixel-wise edge linker). Third, there is the need to allow the use of “connecting



edges” in a controlled way.

E. Calculating a solution’s fitness

The length of the shortest path calculated as in section III-D is already an indication of the

quality of a registered cadastre edge. To get a suitable fitness measure for the whole solution sk,

we sum the shortest path lengths for all edges in sk and we add three penalties, to drive down

the complexity of solutions and avoid malformed solutions:

First we penalize unused edges, those not mapped to ⊥ which are not part of any shortest

path. Also, the shortest-path weighting method values registrations for each cadastre edge inde-

pendently. As a consequence, a cadastre vertex usually corresponds to several terrain vertices.

To avoid this we add a second penalty, for each cadastre vertex, which depends on the number

of matching terrain vertices —a penalty applies if there is more than one terrain vertex for each

cadastre vertex. Finally, we penalize terrain vertices that do not correspond to a cadastre vertex

and that have more than two incident terrain edges selected for shortest paths.

In all, the fitness f of a solution (lower is better) is

∑

ek∈Ec

lek
+ α4 · nu + α5

∑

vj∈Vc

(|Hvj
| − 1) + α6

∑

vk∈Vt

(|Ivk
| − 2) (6)

where lek
is the length of the shortest path calculated for the cadastre graph ek (the sum of the

path matching weights of its edges), nu is the number of unused terrain edges, Hvj
is the set

of terrain vertices corresponding to the cadastre vertex vj , and Ivk
is the set of terrain edges

incident to the the terrain vertex vk.

F. Optimization

Once we have a representation (sections III-A and III-D) which allows us to find solutions

near a given one (section III-B), to find an initial solution (section III-C), and to calculate a



solution’s fitness (section III-E), we can apply standard optimization algorithms such as steepest

descent, simulated annealing [14] or genetic algorithms to find the (possibly global) optimum.

We have used simulated annealing.

G. Registration near cadastre nodes

The optimization process alone cannot at the same time register the cadastre onto salient

image edges and preserve the spatial structure of the cadastre graph: To preserve the spatial

structure in areas of the image with a low density of image edges we need to allow the use of

connecting edges, which are straight and do not follow salient image edges. In these same low

density areas, because image edges are sparse, strictly following image edges may modify the

spatial structure of the cadastre, splitting or deleting faces in the cadastre graph, for example.

Additionally, adding connecting edges may make the graph non-planar. Some of the penalties

included in the fitness function (section III-E) mitigate the problem, but do not eliminate it

completely. The underlying reason is that it is not really possible to register cadastre edges

which do not have a corresponding image edge.

These problems tend to occur at the areas near nodes of the cadastre graph. For this reason,

the optimization procedure does not attempt to register the cadastre there (section III-D). After

the optimization phase, we process these areas as follows to complete the registration (see Fig. 5

for a graphical example):

For a cadastre node n, let E = {e1, e2, . . . , ek} be the set of cadastre edges incident to it.

Each cadastre edge ei is registered to a chain of terrain edges which can end at n, or at a terrain

node close to n. Let’s call ni the endpoint for ei which is close to or equal to n.

Let M be a subgraph of the terrain graph containing only edges and nodes close to n. We can

find paths through M which connect some endpoints ei, ej together. Let’s split E into subsets



J1, J2, . . . , Jm grouping those edges whose endpoints can be connected through M . We then

connect these endpoints within each Ji using these terrain edges in M . Finally, we join the sets

J1, . . . , Jm, by adding appropriate straight edges to the registered cadastre graph.
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Fig. 5. Registration near cadastre node n. 1: node n and terrain subgraph M . 2: incident edges e1, . . . , e5 and endpoints

n1, . . . , n5 (n1 = n). 3: connection within subsets J1 = {e1}, J2 = {e2, e3}, and J3 = {e4, e5}. 4: connection between

subsets J1, J2, and J3.

H. Registration quality measure

For each registered cadastre edge ek we calculate a quality measure, the registration ratio.

The shortest path for ek, sk, is a chain of terrain edges and connecting edges. The registration

ratio is the length of the terrain edges in sk (that is, not counting connecting edges) divided by

the total length of sk (we use the Euclidean length, “path matching weight”-induced length of

section III-D). A cadastre edge which is fully registered to terrain edges has a registration ratio

of 1, while that for a cadastre edge which corresponds to a single connecting edge from end to

end is 0.

This appears to be a good indicator of whether or not the cadastre edge follows a true terrain

limit. Since path matching weights are higher for connecting edges than for terrain edges, cadastre

edges will tend to register themselves onto the terrain unless there is really no terrain edge strong



enough to follow. In section V-B we further explore this.

IV. REGION-BASED REGISTRATION ALGORITHM

In contrast to the edge-based registration algorithm, which attempts to match corresponding

edges in the terrain and the cadastre graph, the region-based registration algorithm works by

trying to match nodes in the dual terrain graph T̄ = (ET̄ , VT̄ , w), corresponding to homogeneous

terrain regions, to nodes in the dual cadastre graph C̄ = (EC̄ , VC̄), corresponding to cadastre

plots.

Since T will be obtained by over-segmenting the image, we can assume that each node in

T̄ belongs to only one node in C̄, and formalize a solution as a mapping s : VT̄ → VC̄ , and

use various optimization algorithms to find an optimal or near-optimal solution. We propose

two variants: In Section IV-A using probabilistic relaxation for the optimization process, and in

Section IV-B using simulated annealing.

In the description of the region-based registration algorithm, k0, . . . , k7, β, π0, π1, π2, πr, and

Nr are tuning parameters (see section V-A and table III). N(a) is the set of neighbors of the

graph node a, and wij is the weight of the edge in T̄ between nodes i and j.

A. Registration by probabilistic relaxation

Probabilistic relaxation or relaxation labeling is an optimization method first proposed by

Rosenfeld et al. [18]. Following Fu and Yan’s notation [19], we define a set of objects to be

labeled (the terrain nodes VT̄ in our case), a set of possible labels (the cadastre nodes VC̄), initial

probabilities p(0), an influence function d and a compatibility function c.

The influence function dij , with i, j ∈ VT̄ , measures the relative influence a face j has over

the face i. For non-adjacent faces, it is 0. For adjacent faces, we make it dependent on the area



aj of the face j, and on the length `ij of the edge (i, j). Specifically,

dij = κi

(

k0 + k1`
k2
ij + k3a

k4
j

)

, (7)

where κi is chosen to fulfill the condition
∑

j dij = 1.

The compatibility function cij(λi, λj), for i, j ∈ VT̄ so that dij 6= 0, and λi, λj ∈ VC̄ , measures

the compatibility of the labeling i 7→ λi and j 7→ λj , with 0 ≤ c ≤ 1 and
∑

λi
cij(λi, λj) = 1.

We have chosen

cij(λi, λj) =



















(1 − wij)
β if λi = λj,

1−(1−wij)
β

|VC̄ |
if λi 6= λj,

(8)

that is, the more salient the edge between two faces, the better it is these faces be labeled

differently. This is because two terrain faces are separated by a non-salient terrain edge when

they look very similar, that is, when they actually belong to the same field in reality; thus, we

want to favor them belonging to the same cadastre region. Conversely, they are separated by a

very salient terrain edge when they look very different, probably because they belong to different

fields; in that case, we want to favor them belonging to different cadastre regions.

The initial probability function p
(0)
i (λ), with i ∈ VT̄ and λ ∈ VC̄ , gives the initial state of the

system (a sort of fuzzy initial solution). It should reflect the a priori probability that i is mapped

to λi, but probabilistic relaxation works correctly even if these are not real a priori probabilities

obtained through statistical analysis. We chose the following initial probabilities: For each node

i in T̄ , we find the barycenter bi of its corresponding face in T . We then find the face in C



whose center of gravity is closest to bi, and its corresponding node in C̄, ci. We define

p
(0)
i (λ) =























































αiπ0 if λ = ci,

αiπ1 if λ ∈ N(ci),

αiπ2 if λ ∈ ∪b∈N(ci)N(b) \ {ci},

αiπr otherwise

(9)

with αi such that
∑

λ∈VC̄
p

(0)
i (λ) = 1.

An iterative process is then run, repeatedly updating the current probabilities with an update

function defined in [19], p(t+1) = F (p(t), c, d), until convergence (or for a maximum number of

iterations):

p
(k+1)
i (λ) = p

(k)
i (λ) ·

(

1 + a
(k)
i (λ)/q

(k)
i

)

, (10)

a
(k)
i (λ) = s

(k)
i (λ) − s̄

(k)
i , (11)

s̄
(k)
i =

∑

λ∈VC̄

p
(k)
i (λ)s

(k)
i (λ), (12)

s
(k)
i (λ) =

∑

j∈VT̄

dij

∑

η∈VC̄

cij(λ, η)p
(k)
j (η), (13)

with different authors giving different choices for q
(k)
i ,

q
(k)
i =







































1 + s̄
(k)
i (Rosenfeld et al. [18]),

s̄
(k)
i (Zucker et al. [20]),

1 (Chen and Luh [21], [22]).

(14)

After convergence to p(∞), the solution is the labeling

s(∞)(i) = argmax
λ∈VC̄

p
(∞)
i (λ). (15)

In our implementation, we treat values of p
(t)
i (λ) lower than a small threshold as 0, which

greatly reduces processing time without changing the results.



B. Registration by simulated annealing

We can use simulated annealing to find a near-optional solution. For this we need an initial

solution s(0), a way of evaluating the energy of a solution, and a way of obtaining solutions

similar to a given solution. Starting from a solution s(0) the algorithm iteratively modifies it to

obtain a near-optimal solution s(∞).

To obtain s(0) we use p(0) defined in Eq. (9): s(0)(i) is chosen randomly following the

probability distribution given by p
(0)
i . To obtain from s a similar solution s′, we replace a certain

number Nr of its labelings; each new labeling s′(i) is chosen randomly following p
(0)
i .

To evaluate the quality of a solution s, we do the following: For each i ∈ VT̄ , we find es(i)

es(i) = aik7δexterior(i) + ak5
i ·

∑

j∈N(i)

e′s(i, j) (16)

e′s(i, j) =



















dij

(

1 − (1 − wij)
β
)

if s(i) = s(j),

dij(1 − wij)
β if s(i) 6= s(j)

(17)

where ai is the area of the face in T corresponding to the node i in T̄ , dij is as defined in

Eq. (7), and δexterior(i) is 1 if the node i is mapped to a special node in VC̄ corresponding to

the outside of the cadastre, and 0 otherwise (this is a penalty to minimize such mappings). The

energy of a solution s, E(s), is the sum of the es of its nodes, plus a penalty for each node that

has no neighbor labeled like itself. If there are d such nodes,

E(s) = k6d +
∑

i∈VT̄

es(i). (18)

The lower the energy, the better the solution.

C. Post-processing

The output s(∞) of any of these two variants is then processed in several ways. First, each

node n which has no neighbor labeled like n, is merged to the neighbor node n′ ∈ N(n) for



which the edge (n, n′) ∈ ET̄ has the lowest apparition weight w. This is to avoid very small

isolated regions. Second, following the mapping defined by s(∞), the connected faces in T which

have the same label are merged. The resulting primal graph R is taken as the registration of the

cadastre graph C onto the image.

D. Registration quality measure

Each edge e in R is the concatenation of a certain set of edges P (e) ⊂ T . We compute m(e),

the average of the apparition weights of the edges in P (e), weighted by their lengths:

m(e) =

∑

t∈P (e) wt`(t)
∑

t∈P (e) `(t)
. (19)

This gives a measure of how strong the image edge corresponding to a registered cadastre

edge is. As in section III-H, low values indicate that there is probably no corresponding image

edge, and high values indicate that there is indeed an image edge at that position. In section V-B

we further explore the validity of this indicator.

V. EXPERIMENTS AND EVALUATION

We have done several experiments to investigate the behavior and performance of these

registration algorithms.

We first systematically scanned the parameter space in order to determine the optimal param-

eter set for each of the algorithms and variants. This is described in section V-A.

With these parameter sets the main experiment was run; in this experiment we run the

algorithms in the conditions that will be used in the final, production-grade, processing chain:

parameters set for fast convergence, images downsampled at 2 m per pixel, and realistic cadastre

data. This is described in section V-B.



Finally, other aspects of the algorithms are tested. In section V-C we explore the effect of

convergence speed and input cadastre quality on the algorithms’ performance.

A. Parameter set selection

These algorithms use several parameters and weighting factors, and it is therefore necessary to

find appropriate values for them. We found these optimal parameter values by scanning over the

parameter space (see table III). It is usually desirable to have as few parameters as possible in a

system, which is not the case here; however, we found that the precise value of these parameters

is not critical, as —except for the simulated-annealing variant of the region-based algorithm—

we obtain good results for a wide range of parameter sets and not just for the optimal parameter

set.

B. Main experiment

We have run these algorithms on a test site of 4 km2, on which we defined a ground truth,

containing the terrain edges in the image (field boundaries and other strong edges). This can be

seen as an ideal registration. The segmentation used to obtain the terrain graph T was computed

with Guigues’ scale-sets algorithm [13] using the red, green, and blue color components of an

image, downsampled to 2 m per pixel to improve speed.

For the edge-based algorithm, we let the optimizer run for 2500 iterations with a fast cooling

schedule, taking around 10 minutes to process the whole test site. For the region-based algorithm,

we let the optimizers, in both variants, run for about 4 minutes. The best parameter sets were

used for this experiment (see section V-A).

The ground truth and the registered cadastre graph were pixelized. In order to obtain a measure

of the performance of each algorithm, we computed the distances between each pixel of the



registered cadastre graph and the ground truth, and the distances between each pixel of the

unregistered cadastre graph and the ground truth. Let Ic ⊂ Z
2 be the set of pixels of a cadastre

graph (registered or not), and Ig ⊂ Z
2 that of the ground truth. The distance between a pixel

ic ∈ Ic and the ground truth is

d(ic, Ig) = min
ig∈Ig

‖ic − ig‖, (20)

and the average distance between the cadastre graph and the ground truth is

d(Ic, Ig) =
1

|Ic|

∑

ic∈Ic

d(ic, Ig). (21)

A histogram of these distances d(ic, Ig) is shown in Fig. 6.
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Fig. 6. Histogram of distances from cadastre graph pixels to ground truth, in meters, for the cadastre registered by the edge-

based algorithm (edge), by the region-based algorithm with probabilistic relaxation (region relaxation), by the region-based

algorithm with simulated annealing (region annealing), and for the unregistered cadastre (unregistered).

Since some cadastre edges have no matching ground truth edge (because the cadastre edge does

not correspond to any edge in the image), the histogram tails off to large distances. Therefore, in

order to obtain a meaningful aggregate quality measure, we excluded cadastre edges for which

the average distance to the ground truth was larger than 6 m, or which had a pixel that was farther

than 20 m away from the ground truth, and we calculated the average distance to the ground



truth of the pixels in the remaining cadastre edges. These thresholds were manually chosen

after inspecting the input data and these histograms, and are meant to exclude non-matchable

edges (cadastre edges which do not have a corresponding image edge). Since these thresholds

are applied to both the unregistered and the registered cadastre, their actual value is of little

importance for finding how much the registration reduces the average distance in relative terms.

We found experimentally that misregistered edges were never so far away from the ground truth.

A histogram of the distances from the remaining cadastre edges to the ground truth is shown in

Fig. 7, and a summary is given in table I. In this table, length is the total length of the unregistered

or registered cadastre edges, including non-matchable edges, and length (matchable) is that

excluding non-matchable edges. The average distances given in this table are these calculated

using Eq. (21). Fig. 8 shows graphical results for a part of the test region. The large differences

in table I in length between the unregistered and registered cadastres has a simple explanation:

unregistered cadastre edges are often long straight lines, whereas registered edges follow terrain

details with pixel accuracy. Registered edges are therefore much longer than unregistered ones.
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Fig. 7. Histogram of distances from cadastre graph pixels to ground truth, in meters, excluding non-matchable edges (main

experiment: 2 m per pixel, fast convergence, best parameter set). Note how the registered histograms shows higher counts than

the unregistered histogram for low distances.



TABLE I

EVALUATION RESULTS (MAIN EXPERIMENT).

cadastre unregistered registered registered registered

algorithm edge reg. relax. reg. anneal.

length 95.9 km 188.0 km 210.6 km 283.5 km

length (matchable) 32.7 km 61.6 km 66.7 km 76.4 km

mean distance 2.351 m 1.640 m 1.594 m 1.844 m

iterations 2500 1000 15000

distance reduction 30.23% 32.19% 21.58%

a b

c d

e f

a b

c d

e f

Fig. 8. Results for a 1.4 km2 portion of the test site, processed by the edge-based algorithm (left half) and for a 1 km2 portion

of the test site, processed by the region-based algorithm, with probabilistic relaxation (right half). Source image (a); cadastre

graph C (b, boxed areas are shown enlarged in the bottom row); terrain graph T (c, darker edges have higher apparition weights);

registered cadastre (d, darker edges have higher registration ratios); close-up on the unregistered (e) and registered (f ) cadastre.



The presented algorithms successfully register the cadastre onto the image. With the best

parameter set, the edge-based algorithm reduces the average distance between the cadastre graph

and a ground truth from 2.35 m to 1.64 m, 30.2% less; the region-based algorithm reduces it to

1.59 m, 32.2% less, with the probabilistic relaxation optimization, and to 1.84 m, 21.6% less,

with the simulated annealing optimization. More important than this numerical result —which is

nonetheless useful for comparison to other algorithms, or for selecting the best parameter set—

is the fact that the resulting graph is registered onto terrain edges, hence onto salient edges in

the image, and therefore statistical analysis of these regions will be less perturbed by adjacent

regions.

Visual inspection (see subfigures 8d) seems to show that the registration quality measures

presented in sections III-H and IV-D indicate if a cadastre edge actually exists in the image.

Using this information to delete cadastre edges that cannot be found in the image should be

straightforward. In order to determine if this quality measure actually indicates if a cadastre

edge actually exists in the image, we have calculated, for each value of this quality measure

(suitably discretized and binned) the average, for all pixels in the registered cadastre which have

the given value for the quality measure, of the distance to the nearest pixel in the ground truth.

This is shown in Fig. 9. As before, we should consider that for pixels with a distance to ground

truth below a certain threshold (for example, 6 m, as before) there is a corresponding image

edge, and that for pixels above that threshold there is actually no corresponding image edge.

We clearly see, for the edge-based algorithm and for the region-based algorithm with simulated

annealing, that cadastre pixels with a corresponding image edge have, on average, a high value

of the registration quality measure, whereas those pixels that do not have a corresponding image

edge have, on average, a low value of the registration quality measure. More research is needed



for the region-based probabilistic relaxation method.
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Fig. 9. Average value, for each pixel in the registered cadastre, of the registration quality measure as a function of the distance

from that pixel to the nearest ground truth pixel.

C. Other experiments

In this section we present the results of tests exploring the effect of the cooling schedule and

the cadastre quality on the algorithms’ performance.

1) Increased number of iterations: Execution speed is critical for our application, which

is why we worked with downsampled images and we let the optimizer run for a relatively

small number of iterations (2500 for the edge-based method, 1000 for the relaxation region-

based method, and 15000 for the annealing region-based method), with parameters set for a fast

convergence, or a fast cooling schedule. For example, for simulated annealing, we have used a

cooling schedule Tn = T0 · kn with k close to, but less than, 1; a slower cooling schedule is

one with a k closer to 1 than a faster cooling schedule. For the edge-based algorithm, we took

k = 0.9, and for the simulated annealing region-based algorithm, we took k = 0.98. These give

fast execution times of the order of 1 minute per square kilometer.

However, to fully evaluate its performance we also ran it for more iterations (15000 for the

edge-based method, 10000 for the relaxation region-based method, and 150000 for the annealing



region-based method), with parameters set for a slower convergence (k = 0.97 for the edge-based

algorithm, and k = 0.99 for the simulated annealing region-based algorithm). For all these test

we used the optimal parameters found in section V-A.

The results for the experiments with slow convergence with 2 m-per-pixel images are listed in

table II under slow convergence. It can be seen that there is little difference between forcing a fast

convergence and allowing a slower convergence —actually, slower convergence gives slightly

worse results, although this could be just bad chance, since there is a random component in these

algorithms. Slower convergence, however, comes at the cost of increased computation time. This

justifies our choice of a fast convergence as the default setting.

2) Worse input cadastre: A related issue is that it may be difficult to fully appreciate the

performance of this algorithm with this cadastre data, since the initial mis-registration is not

very large in terms of distance to the ground truth (but note that reducing this distance is

only one of the goals of this algorithm, the other being to obtain cadastre edges that follow the

geometrical details of the image edges). That is, should the best performance of these algorithms

be given as “reduces average distance to 1.7 m” or “reduces average distance by 30%”?

To answer that, we manually distorted the cadastre graph and ran the algorithm, with 2 m-

per-pixel images, with the fast cooling algorithm and the optimal parameter set. The results are

listed in table II under distorted cadastre. It can be seen that despite the quality of the distorted

unregistered cadastre was much worse (unreg. dist. column), the registration of both cadastres

reaches similar distances to ground truth (distance column). It seems that the obtained quality

levels are some sort of upper limit that the algorithms reach independently of the quality of the

input data, but beyond which they cannot perform, and that therefore the performance should

be described as “reduction to 1.7 m” instead of “reduction by 30%”.



D. Summary of experiments

Table II summarizes the results of all the experiments. Using a slower cooling schedule does

not improve the registered distance. On the other hand, tests with a manually distorted cadastre

graph show that the upper performance limits are to be measured in absolute distances, not as a

relative improvement, for both with the small unregistered distance of the original cadastre and

the larger unregistered distance of the distorted cadastre the algorithms reach similar registered

distances.

TABLE II

EVALUATION RESULTS FOR ALL EXPERIMENTS (“CONV.”: COOLING SCHEDULE, OR SPEED OF CONVERGENCE; “UNREG.

DIST.”: DISTANCE FOR UNREGISTERED CADASTRE).

conv. cadastre algorithm unreg. dist. distance

fast original edge 2.351 m 1.640 m -30.23%

fast original reg. relax. 2.351 m 1.594 m -32.19%

fast original reg. anneal. 2.351 m 1.844 m -21.58%

fast distorted edge 2.831 m 1.665 m -41.20%

fast distorted reg. relax. 2.831 m 1.595 m -43.65%

fast distorted reg. anneal. 2.831 m 2.020 m -28.62%

slow original edge 2.351 m 1.665 m -29.18%

slow original reg. relax. 2.351 m 1.605 m -31.72%

slow original reg. anneal. 2.351 m 2.001 m -14.90%

VI. HOMOGENEITY TESTS

The algorithms described above do not always produce homogeneous regions. If a cadastre

region is itself not homogeneous —and not because of some stray pixels in the border, which

would be corrected by the registration algorithms, but because it actually contains more than one



plot— in most cases the registration algorithms will produce a heterogeneous region. Depending

on the application, we may need a way to detect these heterogeneous regions and, eventually,

to decompose them into homogeneous sub-regions. We propose two ideas for future research:

We could analyze the terrain edges contained in the registered cadastre regions, and calculate

their maximum appearance weight —excluding terrain edges closer than a certain distance to

the region edge. High values would indicate that the region is not homogeneous and should be

split into several regions.

In the context of land-use classification, another clue to the fact that a region is heterogeneous

would be that per-region classification algorithms report a very low confidence to whatever single

terrain class is assigned to the region. In that case, we should attempt to partition the region

following high-saliency edges, classify each of the sub-regions, and compare their confidences

to that of the whole region.

Another problem is that it is possible that a single plot spans several cadastre regions.

Although not as important a problem as that of registered regions being heterogeneous, it may

be appropriate to merge adjacent cadastre regions containing the same crop. This can be done

by using the registration quality measures of both algorithms as indicators of whether or not the

edge follows a true terrain limit.

VII. DISCUSSION AND CONCLUSION

In this article we have presented two graph matching algorithms specifically tailored for

asymmetric graph matching problems —where matches are, in most cases, not one-to-one—

which can be used to register a cadastre graph onto an aerial image, or in general to partition

an image into objects following a corresponding, but geometrically imprecise, external partition.

We use a multi-scale segmentation of the image which is converted to a weighted graph.



In the edge-based algorithm, the edges of this graph are asymmetrically matched to the edges

of the cadastre graph —which correspond to edges between land plots— by optimizing, using

simulated annealing, the fitness of a solution. We use an ad-hoc method for the registration

near cadastre nodes. In the region-based algorithm, it is the faces of the terrain graph which are

matched to the faces of the cadastre graph —each such face corresponds to a land plot—, and

either probabilistic relaxation or simulated annealing can be used for the optimization.

Extensive tests show that, numerically, the region-based method with probabilistic relaxation

performs best, followed by the edge-based method, and, far behind, the region-based method

with simulated annealing. The choice between the first two is not so clear-cut, however, because

the algorithms exhibit qualitatively different behavior: The edge-based algorithm preserves the

spatial distribution of the cadastre graph much better, at the cost of adding auxiliary edges

that do not correspond to image edges. The region-based algorithm, on the other hand, strictly

follows image edges, at the cost of not always preserving spatial distribution. Although numerical

evaluation gives better figures for the region-based algorithm with probabilistic relaxation, for a

given application the trade-off between geometrical precision and topology preservation should

be taken into account and perhaps the edge-based algorithm may be a better choice.

As a side effect of the registration we obtain a parameter, the registration quality measure,

which seems useful as an indicator of which cadastre edges actually exist in the image. Formal

tests to determine if this is actually a good indicator for that purpose support this, but show that

further work may be necessary.



APPENDIX I

IMPLEMENTATION DETAILS

The best parameter sets found by scanning the parameter space, and used in the experiments,

are given in table III.

TABLE III

BEST-PERFORMING PARAMETER SETS.

edge α1 = 6.5 α2 = 0.22 α3 = 3 α4 = 18

α5 = 0 α6 = 8000 Nr = 5 p⊥ = 0.3

region relax. k0 = 0 k1 = 1 k2 = 1 k3 = 1

k4 = 1 q
(k)
i = 1 π0 = 1.1 π1 = 0.6

π2 = 0.4 πr = 0.1 β = 1

region anneal. k0 = 0 k1 = 1 k2 = 1 k3 = 2

k4 = 0.7 k5 = 0.7 k6 = 0.1 k7 = 0.1

π0 = 0.83 π1 = 0.13 π2 = 0.10 πr = 0.03

β = 2

REFERENCES
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