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Abstract.  3-D  reconstruction  in  Nuclear  Medicine  imaging  using  complete  Monte-Carlo 
simulation of trajectories usually requires high computing power. We are currently developing a 
Parisian  Evolution Strategy in order  to reduce the computing  cost of reconstruction without 
degrading the quality  of results. Our approach derives from the Fly algorithm which proved 
successful on real-time stereo image sequence processing. Flies are considered here as photon 
emitters. We developed the  marginal fitness technique to  calculate the  fitness function, an 
approach usable in Parisian Evolution whenever each individual's fitness cannot be calculated 
independently of the rest of the  population.
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1.   Introduction

1.1 Nuclear medicine

In Nuclear Medicine diagnosis,  radioactive substances are administered to patients 
using  a  tracer  molecule  containing  a  radioactive  marker.  The  distribution  of 
radioactivity  in the body is  then estimated from the radiation detected by gamma 
cameras. In order to get an accurate estimation, a three-dimensional tomography is 
built from two-dimensional scintigraphic images.. 
 Some artefacts due to scattering and absorption are then to be corrected. Existing 
analytical and statistical methods are costly and require heavy computing. The main 
variants  of  Nuclear  Imaging  are  SPECT  (Single  Photon  Emission  Computed 
Tomography)  and  PET  (Positon  Emission  Tomography).  Radioactive  tracers  are 
photons  or  positons  emitters.  Compared to  other  tomography techniques  as  X-ray 
scanning or Magnetic Resonance Imaging, Nuclear Imaging brings useful information 
on biological  and metabolic  function. The marker most widely used in SPECT is 
Technetium 99m (99mTc), with a half-life of about 6 hours and emitting photons at 
an  energy  level  of  140keV,  which  is  well  adapted  to  current  gamma-camera 
technology. In planar mode, the gamma camera is  fixed and collects a plain two-
dimensional projection of the radioactive tracer concentration. In tomographic mode, 
the gamma camera rotates around the patient. A gamma camera can also be used in 
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static or dynamic mode, allowing to monitor how the radioactive tracer concentration 
evolves in the body. The main limitations of this technology are: 
− sensor performance (resolution, sensitivity),
− physical effects (absorption, scattering, noise), 
− motion of patient (long exposure times),
− accuracy of reconstruction algorithms.

1.2 The Compton effect and its consequences

Rayleigh effect occurs when a photon meets an atom without disturbing its electronic 
structure.  The photon then gets  deviated but  keeps its  original  energy.  With high 
energy photons, this effect is negligible except in the gamma camera crystal itself. In 
photoelectric interaction, our photon is completely absorbed by an atom which then 
emits a fluorescence photon to carry the excess energy. This is the basic process of 
photon detection in the gamma camera. 
The Compton effect is by far the dominant perturbation during the transit of high 
energy photons  from the  tracer  through the  body.  Both  absorption  and  scattering 
induce important effects on image quality, as they vary with the nature and thickness 
of the part of the body involved. Compton scattering with important energy losses 
will have a larger than average deviation angle.
The photons with an energy level close to the initial level have a small probability of 
having  been  deviated.  However,  the  energy  resolution  of  gamma  cameras  is  not 
sufficient to always ascertain whether a photon has been deviated or not. In order to 
correct attenuation, it is possible to use a X-ray CT scanner image which gives an 
accurate  representation  of  the  attenuation  map  in  the  body;  however,  a  uniform 
attenuation map may be used when the organ is homogeneous enough. On the other 
hand, scattering is more difficult to deal with. The main algorithm families [1, 2, 7] 
are:
− subtraction algorithms using energy windows to filter primary electrons,
− deconvolution algorithms which consider scattering is a uniform process,
− recombination algorithms (based e.g. on principal component analysis).

Our long-term aim is to correct Compton scattering using Evolutionary Computation 
in  order  to  get  faster  results  with  a  level  of  quality  similar  to  present  high  cost 
algorithms. The first step presented in this paper is the validation of an evolutionary 
3-D reconstruction algorithm with a simplified propagation model, allowing future 
replacement of the propagation module with a more accurate model [6] including the 
modelling  of  Rayleigh  and  Compton  effects.  Contrary  to  standard  reconstruction 
algorithms:  Filtered  back  projection  (FBP)  and  Ordered  Subset  Expectation 
Maximisation (OSEM) where the problem is split into parallel 2-D slices and not all 
sensor data are used, our method pertains to the family of "fully 3-D" reconstruction 
methods.
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Fig. 1.  Detection spectrum of gamma photons

Fig. 2. Contributions of primary and scattered photons. 

2.   A Parisian Evolutionary Approach

 2.1 The classical Fly algorithm

The original Fly Algorithm [5] is a 3-D evolutionary reconstruction method based on 
the Parisian Approach. Each individual ("fly") represents a point of space and the 
whole population of flies is the representation of the object detected. It uses a fitness 
function based on the consistency of grey level properties of the projections of the fly 
on the images taken by each camera. It has been first used on stereovision [4].
Here, the semantics of the fly is enriched as we will now consider the fly is a photon 
emitter. Again, the algorithm evolves a population of flies which eventually converge 
to the three dimensional shape to be detected. While this approach has been validated 
in its principles, computation costs were still high due to the complexity of physically 
modelling random photon trajectories, and the reconstruction results were not quite up 
to the vquality expected or obtained through more classical methods. Following this, 
we  developed  an  innovative  evaluation  function  based  on  a  specific  approach  to 
fitness  calculation,  called  "marginal  fitness",  giving  encouraging  results  on  both 
simplified synthetic data and real scintigraphic images.
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2.2 Monte-Carlo simulation

Monte-Carlo  simulation  [3]  is  well  adapted  to  nuclear  medicine  with  its  particle 
emission,  propagation  and  detection  random processes.  Each  photon  trajectory  is 
processed separately. The photon is propagated through space cells where it can be 
absorbed  or  scattered  conforming  to  suitable  random  depending  on  the  local 
environment. Each photon thus carries his own including which fly was its source. In 
a first approach, we considered the patient's body as a homogeneous cylinder. A later, 
more refined approach consists of using an absorption map in function of the material 
involved.

2.3 Building a fitness function

Radioactive tracers are only present in the central search zone, which contains the 
patient's body. The "screens" are the different positions of the gamma camera crystals. 
A fly is defined as a photon emitter and is described by its coordinates (x, y, z). 

Fig. 3.  Modeling the tomographic system: lateral view (left), axial view (rigth)

We first  validated  the  principles  of  an  evolutionary  approach  using  a  simplified, 
homogeneous model of the body, and a bonus-based fitness function: each simulated 
photon that reached a detector cell had a contribution to the fitness of its originator fly 
proportional to the actual number of photons received by this cell. The high number 
of Monte-Carlo simulations led to unrealistic processing time. In a second approach, 
in order to speed up processing, we defined a number of archetypal flies characterised 
by  their  distance  from the  detectors,  while  the  search  space  was  still  considered 
homogeneous. Monte-Carlo simulation was performed on each archetypal fly and the 
results stored to be used as a lookup table in the evolutionary process. Evolution was 
then  run  calculating  fitness  values  based  on  pre-calculated  Monte-Carlo  results, 
leading to less than half the original computation time. However this approach cannot 
take into account the heterogeneity of matter and it lacks precision, so that we had to 
concentrate  on  developing  a  fitness  function  that  be  fast,  accurate  and  open  to 
heterogeneity.

The overall process is summarized  by the following  diagram:
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Fig. 4. The 3D Evolutionary reconstruction

Bonus fitness.  While reducing the number of photons emitted by each fly to only 4 
photons  initially  oriented  orthogonally  to  the  detectors  gave  a  substantial 
improvement in calculation time, experience showed an important backside of bonus-
based fitness: in presence of several bright objects, the flies will tend to accumulate 
on the brightest or biggest object at the expense of the other ones. This is illustrated 
on the following images: the 3-D scene consists of two cubes of different size and 
brightness; the image on the left shows what an ideal reconstruction algorithm should 
have given, and the right image what it actually gave using bonus fitness. The same 
behaviour was found on all similar data.

Fig. 5. Bonus fitness: loss of smaller objects (left: ideal image; right: actual reconstruction, side 
view). 

Marginal  fitness.  Rather  than  evaluating  a  fly  independently  of  its  context,  we 
introduced  marginal  evaluation  by  defining  the  fitness  of  a  particular  fly  as  its 
contribution (positive or negative) to the whole population's Fitness:

fitness (i) = Fitness (population - { i}) - Fitness (population) (0)

To this end, the Fitness of a given population is given by the likeness of the projection 
images generated through Monte-Carlo simulation, with the actual images given by 
the sensors. As the grey level of the synthesised images depends on the number of 
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flies, a normalization factor must be introduced in order to compare the natural and 
synthetic projections.

Fig. 6.  Marginal fitness: better detection of smaller objects (left: ideal image; right: actual 
reconstruction), side view. 

Fig. 7. Top views of results with bonus (left) and marginal (right) fitness functions

Rotating screens . Rotating screens are often used in SPECT imaging, with up to 128 
screen positions. In order to exploit all the data while keeping memory requirements 
down, only 4 screens are used for fitness calculation and periodically rotated.

3.   Results

The  following  results  have  been  calculated  from  real  SPECT  images  using  the 
algorithm  described  above.  In  the  current  state  of  research,  we  did  not  include 
detailed  Monte-Carlo  simulation  of  absorption  and  Compton  scattering  into  these 
experiments  which  only  demonstrate  the  validity  of  the  fly-based  reconstruction 
algorithm. Integration of  a fast  Monte-Carlo simulation into the algorithm will  be 
necessary to obtain high quality results.
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3.1  Example 1

The objects are three cylinders with different brightness and diameter. The parameters 
are given in table 1.

Table 1.  Parameters used in synthetic data reconstruction

projection image size 128*128 

number of flies 266000

number of screens used at each generation  4 

total number of screens 128 

 screens rotated every 5 generations 

 number of generations 1000

probability of mutation 50,00%

decrease of pm per generation 5,00%

probability of crossover 0,00%

mutation factor  1cm

As this is usual with Parisian Evolution, high mutation rates are used while crossover 
is not always essential to performance.

Fig. 8.  Synthesised projections of the object, viewed under  different angles: n / 4, n  ∈ [ 0,7]}

Fig. 9. Side views of the 3-D reconstructed object (flies) under the same angles



8      

Fig. 10.  Views of original object (left) and reconstructions (slices of 5, 10 and 20 pixels).

3.2 Example 2

Here, there are 3 nested objects with different brightness. The algorithm parameters 
are the same as in the previous  example.

Fig. 11.  Synthesised  projections of the object, viewed under different angles.

Fig. 12.  Side views of the 3-D reconstructed object (flies) under the same  angles.

Fig. 13. Top views of the 3-D reconstructed object: original object (left) and its reconstructions 
(slices of 5, 10 and 20 pixels).
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3.3 Example 3: real data

We tested the algorithm on actual images of bone scintigraphy, with the following 
parameters:

Table 2.  Parameters used in bone scintigraphy reconstruction 

projection image size 128*128

number of flies 1017500

number of screens used at each generation  4 

total number of screens 64

screens rotated every 5 generations 

number of generations 1000

probability of mutation 50,00%

decrease of pm per generation 5,00%

probability of crossover 0,00%

mutation  factor  1cm

Fig. 14.  Original projection acquired around the patient

Fig. 15.  Side views of the 3-D reconstructed object (flies).
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 Our algorithm  was compared with a commercial 2D OSEM reconstruction. It well 
recovers shapes and contrast, with a processing time around 10 times longer than the 
optimized OSEM.

Fig. 16.  Projections of the 3-D reconstructed object (flies): Acquisition (left), OSEM (middle), 
Flies (right).

Fig. 17. Axial views of the same 3-D reconstructed object (flies), at waist (upper row) and 

thorax (lower) levels. (Dash lines of figure 16). OSEM (left) and Flies (right) reconstructions.

3.4 Example 4: noise resistance

In this test example, a Gaussian noise has been added to the images of example 1 
(Fig. 9) and the same algorithm parameters have been used.
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Fig. 18. Noisy synthesised projections of the object.

Fig. 19. Side views of the 3-D reconstructed object

Fig. 20.  Top views of the object reconstructed from noisy images (slices of 5, 10 and 20 
pixels).

We observe that reconstruction is fairly noise resistant, probably thanks to the fact 
screen redundancy is exploited by the algorithm, although the brightness differences 
between the three cylinders are not rendered as clearly as with the noiseless images.
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4   Conclusion

We demonstrated the validity of a generalization of the Fly algorithm introducing the 
marginal  fitness  calculation  method,  to  constructing  the  3-D shape of  radioactive 
tracer concentration from SPECT images. Contrary to more classical approaches, our 
"fully 3-D reconstruction method" exploits all the projection images. The next stages 
of  this  research  will  concentrate  upon building  simplified  but  accurate  models  of 
scattering and absorption derived from complete Monte-Carlo simulation of Compton 
and Rayleigh scattering, exploit energy level information and x-ray absorption data, 
in order to get high quality results in realistic times. More elaborate validations than 
visual  inspection  must  be  achieved  with  ground truth  images  than  only  could  be 
obtained by sophisticated Monte Carlo simulations. 
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