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Abstract. 3-D reconstruction in Nuclear Medicine imaging using complete Monte-Carlo
simulation of trajectories usually requires high computing power. We are currently developing a
Parisian Evolution Strategy in order to reduce the computing cost of reconstruction without
degrading the quality of results. Our approach derives from the Fly algorithm which proved
successful on real-time stereo image sequence processing. Flies are considered here as photon
emitters. We developed the marginal fitness technique to calculate the fitness function, an
approach usable in Parisian Evolution whenever each individual's fitness cannot be calculated
independently of the rest of the pgulation.
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1. Introduction

1.1 Nuclear medicine

In Nuclear Medicine diagnosis, radioactive substances are administered to patients
using a tracer molecule containing a radioactive marker. The distribution of
radioactivity in the body is then estimated from the radiation detected by gamma
cameras. In order to get an accurate estimation, a three-dimensional tomography is
built from two-dimensional scintigraphic images..

Some artefacts due to scattering and absorption are then to be corrected. Existing
analytical and statistical methods are costly and require heavy computing. The main
variants of Nuclear Imaging are SPECT (Single Photon Emission Computed
Tomography) and PET (Positon Emission Tomography). Radioactive tracers are
photons or positons emitters. Compared to other tomography techniques as X-ray
scanning or Magnetic Resonance Imaging, Nuclear Imaging brings useful information
on hiological and metabolic function. The marker most widely used in SPECT is
Technetium 99m (99mTc), with a half-life of about 6 hours and emitting photons at
an energy level of 140keV, which is well adapted to current gammacamera
technology. In planar mode, the gamma camera is fixed and collects a plain two-
dimensional projection of the radioactive tracer concentration. In tomographic mode,
the gamma camera rotates around the patient. A gamma camera can aso be used in



static or dynamic mode, alowing to monitor how the radioactive tracer concentration
evolvesin the body. The main limitations of this technology are:

- sensor performance (resolution, sensitivity),

- physical effects (absorption, scattering, noise),

- motion of patient (long exposure times),

- accuracy of reconstruction algorithms.

1.2 TheCompton effect and its consequences

Rayleigh effect occurs when a photon meets an atom without disturbing its electronic
structure. The photon then gets deviated but keeps its original energy. With high
energy photons, this effect is negligible except in the gamma camera crystal itself. In
photoelectric interaction, our photon is completely absorbed by an atom which then
emits a fluorescence photon to carry the excess energy. This is the basic process of
photon detection in the gamma camera.

The Compton effect is by far the dominant perturbation during the transit of high
energy photons from the tracer through the body. Both absorption and scattering
induce important effects on image quality, as they vary with the nature and thickness
of the part of the body involved. Compton scattering with important energy losses
will have alarger than average deviation angle.

The photons with an energy level close to the initial level have a small probability of
having been deviated. However, the energy resolution of gamma cameras is not
sufficient to always ascertain whether a photon has been deviated or not. In order to
correct attenuation, it is possible to use a X-ray CT scanner image which gives an
accurate representation of the attenuation map in the body; however, a uniform
attenuation map may be used when the organ is homogeneous enough. On the other
hand, scattering is more difficult to deal with. The main agorithm families [1, 2, 7]
are;

- subtraction agorithms using energy windows to filter primary electrons,

- deconvolution algorithms which consider scattering is a uniform process,

- recombination algorithms (based e.g. on principal component analysis).

Our long-term am is to correct Compton scattering using Evolutionary Computation
in order to get faster results with a level of quality similar to present high cost
algorithms. The first step presented in this paper is the validation of an evolutionary
3-D reconstruction algorithm with a simplified propagation model, alowing future
replacement of the propagation module with a more accurate model [6] including the
modelling of Rayleigh and Compton effects. Contrary to standard reconstruction
algorithms, Filtered back projection (FBP) and Ordered Subset Expectation
Maximisation (OSEM) where the problem is split into parallel 2-D dlices and not all
sensor data are used, our method pertains to the family of "fully 3-D" reconstruction
methods.
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Fig. 1. Detection spectrum of gamma photons

Fig. 2. Contributions of primary and scattered photons.

2. A Parisan Evolutionary Approach

2.1 Theclassical Fly algorithm

The original Fly Algorithm [5] is a 3-D evolutionary reconstruction method based on
the Parisian Approach. Each individua ("fly") represents a point of space and the
whole population of flies is the representation of the object detected. It uses a fithess
function based on the consistency of grey level properties of the projections of the fly
on the images taken by each camera. It has been first used on stereovision [4].

Here, the semantics of the fly is enriched as we will now consider the fly is a photon
emitter. Again, the algorithm evolves a population of flies which eventually converge
to the three dimensional shape to be detected. While this approach has been validated
in its principles, computation costs were still high due to the complexity of physically
modelling random photon trgjectories, and the reconstruction results were not quite up
to the vquality expected or obtained through more classical methods. Following this,
we developed an innovative evaluation function based on a specific approach to
fitness calculation, called "margina fitness', giving encouraging results on both
simplified synthetic data and real scintigraphic images.



2.2 Monte-Carlo simulation

Monte-Carlo simulation [3] is well adapted to nuclear medicine with its particle
emission, propagation and detection random processes. Each photon trgjectory is
processed separately. The photon is propagated through space cells where it can be
absorbed or scattered conforming to suitable random depending on the local
environment. Each photon thus carries his own including which fly was its source. In
afirst approach, we considered the patient's body as a homogeneous cylinder. A later,
more refined approach consists of using an absorption map in function of the material
involved.

2.3 Building afitnessfunction

Radioactive tracers are only present in the central search zone, which contains the
patient's body. The "screens” are the different positions of the gamma camera crystals.
A fly is defined as a photon emitter and is described by its coordinates (X, y, 2).
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Fig. 3. Modeling the tomographic system: lateral view (left), axial view (rigth)

We first validated the principles of an evolutionary approach using a simplified,
homogeneous model of the body, and a bonus-based fitness function: each simulated
photon that reached a detector cell had a contribution to the fitness of its originator fly
proportional to the actual number of photons received by this cell. The high number
of Monte-Carlo smulations led to unrealistic processing time. In a second approach,
in order to speed up processing, we defined a number of archetypal flies characterised
by their distance from the detectors, while the search space was still considered
homogeneous. Monte-Carlo simulation was performed on each archetypal fly and the
results stored to be used as a lookup table in the evolutionary process. Evolution was
then run calculating fitness values based on pre-calculated Monte-Carlo results,
leading to less than half the original computation time. However this approach cannot
take into account the heterogeneity of matter and it lacks precision, so that we had to
concentrate on developing a fitness function that be fast, accurate and open to
heterogeneity.
The overall processis summarized by the following diagram:
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Fig. 4. The 3D Evolutionary reconstruction

Bonus fitness. While reducing the number of photons emitted by each fly to only 4
photons initially oriented orthogonally to the detectors gave a substantia
improvement in calculation time, experience showed an important backside of bonus-
based fitness: in presence of severa bright objects, the flies will tend to accumulate
on the brightest or biggest object at the expense of the other ones. This is illustrated
on the following images: the 3-D scene consists of two cubes of different size and
brightness; the image on the left shows what an ideal reconstruction algorithm should
have given, and the right image what it actually gave using bonus fitness. The same
behaviour was found on all similar data.

Fig. 5. Bonusfitness: loss of smaller objects (left: ideal image; right: actual reconstruction, side
view).

Marginal fitness. Rather than evaluating a fly independently of its context, we
introduced marginal evaluation by defining the fitness of a particular fly as its
contribution (positive or negative) to the whole popul ation's Fitness:

fitness (i) = Fitness (population - { i}) - Fitness (popul ation) 0)

To thisend, the Fitness of agiven population is given by the likeness of the projection
images generated through Monte-Carlo simulation, with the actual images given by
the sensors. As the grey level of the synthesised images depends on the number of



flies, a normalization factor must be introduced in order to compare the natural and
synthetic projections.

Fig. 6. Margina fitness: better detection of smaller objects (left: ideal image; right: actual
reconstruction), side view.

Fig. 7. Top viewsof results with bonus (Ieft) and marginal (right) fitness functions

Rotating screens . Rotating screens are often used in SPECT imaging, with up to 128
screen positions. In order to exploit al the data while keeping memory requirements
down, only 4 screens are used for fitness cal culation and periodically rotated.

3. Results

The following results have been calculated from real SPECT images using the
algorithm described above. In the current state of research, we did not include
detailed Monte-Carlo simulation of absorption and Compton scattering into these
experiments which only demonstrate the validity of the fly-based reconstruction
algorithm. Integration of a fast Monte-Carlo simulation into the algorithm will be
necessary to obtain high quality results.
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3.1 Examplel

The objects are three cylinders with different brightness and diameter. The parameters
aregivenintable 1.

Table 1. Parameters used in synthetic data reconstruction

projectionimage size 128*128
number of flies 266000
number of screens used at each generation 4
total number of screens 128
screensrotated every 5 generations
number of generations 1000
probability of mutation 50,00%
decrease of pm per generation 5,00%
probability of crossover 0,00%
mutation factor lcm

Asthisis usual with Parisian Evolution, high mutation rates are used while crossover
is not always essential to performance.

Fig. 9. Side views of the 3-D réconstructed object (flies) under the same angles
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Fig. 10. Viewsof origina object (left) and recons-tructioﬁs@ica of , 10 and 20 pixels).

3.2 Example 2

Here, there are 3 nested objects with different brightness. The agorithm parameters
arethe same as in the previous example.

Fig. 11. Synthesised projections of the object, viewed under different angles.

Fig. 12. Side views of the 3-D ﬂaconstructed object (flies) under fhé same angles.

Fig. 13. Top views of the 3-D reconstructed object: origina object (left) and its reconstructions
(dicesof 5, 10 and 20 pixels).
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3.3 Example 3: real data

We tested the algorithm on actual images of bone scintigraphy, with the following
parameters:

Table 2. Parameters used inbone scintigraphy reconstruction

projection image size 128*128
number of flies 1017500
number of screens used at each generation 4

total number of screens 64

screens rotated every 5 generations
number of generations 1000
probability of mutation 50,00%
decrease of pm per generation 5,00%
probability of crossover 0,00%
mutation factor lem

Fig. 15. Sideviews of the 3-D reconstructed object (flies).
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Our agorithm was compared with acommercial 2D OSEM reconstruction. It well
recovers shapes and contrast, with a processing time around 10 times longer than the
optimized OSEM.

A

Fig. 16. Projections of the 3-D reconstructed object (flies): Acquisition (Ieft), OSEM (middle),

Flies (right).

Fig. 17. Axia views of the same 3-D reconstructed object (flies), at waist (upper row) and

thorax (lower) levels. (Dash lines of figure 16). OSEM (left) and Flies (right) reconstructions.

3.4 Example 4: noiseresistance

In this test example, a Gaussian noise has been added to the images of example 1
(Fig. 9) and the same al gorithm parameters have been used.
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Fig. 19. Sideviews of the 3-D reconstructed object

Fig. 20. Top views of the object reconstructed from noisy images (dices of 5, 10 and 20
pixels).

We observe that reconstruction is fairly noise resistant, probably thanks to the fact
screen redundancy is exploited by the a gorithm, although the brightness differences
between the three cylinders are not rendered as clearly as with the noiseless images.
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4 Conclusion

We demonstrated the validity of a generalization of the Fly algorithm introducing the
marginal fitness calculation method, to constructing the 3-D shape of radioactive
tracer concentration from SPECT images. Contrary to more classical approaches, our
"fully 3-D reconstruction method" exploits all the projection images. The next stages
of this research will concentrate upon building simplified but accurate models of
scattering and absorption derived from complete Monte-Carlo simulation of Compton
and Rayleigh scattering, exploit energy level information and x-ray absorption data,
in order to get high quality results in realistic times. More elaborate validations than
visual inspection must be achieved with ground truth images than only could be
obtained by sophisticated Monte Carlo simulations.
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