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ABSTRACT: A new method to identify internal parameters of a mass-spring deformable object model
from kinematic data is presented. It uses an evolutionary model identification algorithm, with several
original features concerning convergence and adaptivity. Experimental results are presented.
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1. MOTION UNDERSTANDING: �HOW� OR �WHY�?

Identification of image animation model parameters from real life data may be considered as one of the
tasks of pattern recognition. Kinematic model-based image sequence interpretation may not be sufficient
for some applications where mechanically oriented descriptions may be needed (e.g. motion prediction or
simulation). When analysing images using geometric, photometric and motion modelling tools borrowed
from computer graphics, the links between model parameters and their pixel-level effects may not be
obvious and it then becomes necessary to explore the parameter space in order to find out the best match
between real and synthetic images.
Among many animation-oriented modelling tools, we chose particle-based models as they are adapted to
realistic simulation of a broad class of physical processes. Their modularity is a strong argument in the
scope of identification.

2. A PARTICLE-BASED MODELLING SYSTEM

In particle-based animation models Reeves (1983), particles� movements are generated through Newtonian

point mechanics: for each particle i, with mass im , iii xmf
..

=  where if  is the total force applied and

ix
..

the particle acceleration. The force model inputs are the particles� positions, velocities and environment
data.
Most particle-based models developed in the last decade e.g. Van Overveld (1995) did not consider the
parameter identification problem. The Cordis-Anima particle system modelling language developed by
Luciani et al. Luciani (1991), allows to model a wide range of objects, from complex mechanisms to
materials such as sand, powder, smoke, turbulent fluids Luciani (1995), human flows Bouvier (1995).
Based on these, we implemented a modelling system consisting of points with masses, and interactions
(bonds). An object is defined as a set of particles having their masses, positions and speeds, and of bonds
between these particles.  Three bond types are considered: unary bonds, involving one particle (e.g.
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viscosity, gravitation, etc.); binary (�stretch�) bonds between two particles; ternary (�flexion�) bonds,
between three particles. Each bond (whatever its type) may consist of two components:
•  an elastic (�spring�) component which generates a force only depending on particles positions. It may

include non-linearities and upper and lower distance thresholds (�conditional bonds�).
•  a viscous (�damper�) component which generates forces depending on the particles� mutual speeds.

Dampers may also include linear non-linearities and distance thresholds.
An object is constructed in three steps:
•  define particles with their masses and initial positions/speeds;
•  create a catalogue of bonds with their mechanical properties (stiffness, rest length, damping

coefficients etc.);
•  complete object building by installing bonds taken from the catalogue.

Once the object is defined, the animation program calculates, for each time step, the forces applied to each
particle and deduces the particles� accelerations, speeds and positions at the next time step, enabling
calculation of image sequences.

3 EVOLUTIONARY OPTIMISATION TO IDENTIFY THE MODEL

Our target is to identify a mechanical model of an object from kinematic data. We suppose these kinematic
data have been obtained through low-level image data processing.

3.1 COST FUNCTION AND EVOLUTIONARY STRATEGY

Model identification can be considered as the optimisation of a cost function defined as a generalised
distance in the space of trajectories, between the trajectory predicted by the model being evaluated, and the
real given trajectory. The more realistic the model is, the lower its cost will be.
We observed that in general, conventional numerical optimisation techniques are unsuccessful on these
cost functions, often getting trapped into local minima. Therefore we used an Evolutionary Strategy
approach, inspired by biological evolution Rechenberg (1994). It consists in creating a random initial
population of models, coding them as parameter vectors, and letting the population evolve through the
effects of selection, crossover and mutation operators.

3.2 LOCAL COST FUNCTIONS

We experienced that a conventional evolutionary scheme loses rapidly efficiency and precision with larger
number of particles and bonds to be identified. Therefore in order to better exploit the problem�s
specificities we designed a short-term cost function which calculates the square sum of differences between
the real reference trajectory points, and those predicted by the model using the preceding time step. We
could then exploit the fact that the position of a particle at a given time only depends on the recent history
of its neighbourhood. The position of a particle at time t+1 only depends on the positions and speeds of its
neighbours at time t. This allows to split the short-term cost function into each particle�s contributions,
called the �local cost functions�:
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The local cost functions allow better parameter separability, resulting in the number of generations
required for convergence not depending any more on the number of unknowns or the object’s complexity.
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3.3 GENETIC OPERATORS

In this Section, we give some details of the identification algorithm, corresponding to the identification of
linear, non-conditional binary spring bonds. The operators dedicated to the other parameters are very
similar.

Coding and mutabilities

Each individual is coded as a sequence of bond parameter values. In order to provide the algorithm with a
self-adaptive behaviour Bäck (1995), we introduced �mutability� parameters, which control the standard
deviation of mechanical parameter mutations. The mutabilities have no effect on the behaviour or cost of
the individuals, but on the way they evolve. Thus, the balance of robustness and precision remains under
the control of input data and cost function, resulting in a much better accuracy of parameters� final
estimation without real penalty on execution speed.

Initialising

The initial population (typically 100 individuals) is created by generating random values for each
parameter. The parameters of a simple binary spring are: rest length, stiffness and the corresponding
mutabilities. Length parameters are initialised using average observed distances, other parameters using
Log-Gaussian repartitions.

Mutations

Four mutation types are used concurrently, creating entirely or partly new individuals, or creating modified
replicas of existing individuals using random values with mutability-controlled standard deviations. The
individuals partially replicated are chosen with a bias in favour of those having good local cost function
values at the sites involving the bond to be mutated. Mutabilities are transmitted and mutated under the
global cost�s control, which allows them to participate to global evolution and help the evolutionary
strategy to improve precision when adequate.

Multi-parent crossover

For each bond type, all the particles which are an extremity of an occurrence of this bond type are
examined; for each of these particles, a parent is chosen randomly, with a bias in favour of locally good
ones. The new values of parameters are calculated as the mean values of all the parameters taken from all
the parents chosen for this bond type.

Selection

The selection process used here is an �elitist� Goldberg (1989), random choice on the population, biased in
favour of the globally best individuals. In addition, we use a variant of the Powell method to locally
optimise the cost function every 100th generation beginning at the 400th, as an earlier application leads to
premature convergence into local minima.
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4 EXPERIMENTAL RESULTS

4.1 GENERAL IDENTIFICATION AND NOISE RESISTANCE RESULTS ON SYNTHETIC
DATA

In order to test the identification algorithm�s performance on synthetic data, we used an experimental
protocol which consists of building an arbitrary object and initial conditions and calculating a trajectory:
the test consists in �forgetting� the object parameters and use the evolutionary strategy described above in
order to retrieve these parameters from the given synthetic trajectory. The curves below show convergence
results in function of the number of generations on inelastic object consisting of 15 masses, 10 different
linear bond types (20 parameters) and 31 installed bonds, with different noise levels on the trajectory. The
identification algorithm uses 100 consecutive images and a population of 100 individuals. In order to test
the algorithm�s noise resistance, we added a Gaussian random noise to the kinematic data with different
standard deviations.

Figure 1: Log(cost function) Log(precision of parameters� estimation

The asymptotic levels can be interpreted as a distance between the given noisy kinematic data and the
closest physically constructible kinematics. Other tests show that convergence is very good after 500 to
1000 generations, independently of the number of parameters to be identified. In the typical convergence
results shown above, the average parameter estimation error after 1000 generations is lower than 0.01% for
the three lowest noise levels shown.

4.2 CLOTH MODELLING

Provot (1995) developed a cloth model consisting of a periodic mesh with 6 spring types: horizontal and
vertical �structural springs'' between neighbours, diagonal �shear springs'' and double-length �flexion
springs''. An inverse dynamics constraint allows a maximum elongation rate cτ . The model includes 18
parameters (6 bond references described by 3 parameters each). Thanks to the replication of large numbers
of identical springs in varied elongation states, we could only use a single image, corresponding to the
equilibrium state at the end of the synthetic sequence. Convergence is obtained after about 50 to 100
generations and gives results in good accordance with the reference. The table below shows typical values
of 5 parameters of the best individual in a 100 individual population, at the 50th generation, with a 1717
mesh. The first line shows the reference values (which were not known by the algorithm):

length01 length23 length45 stiffness01 τ elongation
rate

cost

reference 0.093750 0.132583 0.187500 4.000000 0.500000 0.000000
estimated

value
0.093984 0.132705 0.187083 4.084211 0.497108 0.014619

estimation
error (%)

0.24 0.09 0.27 2.1 0.58 -

Table I:. Typical values obtained for 5 parameters
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The cost of 0.0146 corresponds to an average error on particles� positions of about 5% of the mesh period
and gives hardly perceptible visual differences with the original sequence.

Figure 2: Five frames from the original animation and their reconstructions from identified parameters (cost
= 0.0146)

4.3 FLUID MECHANICS

Particle-based models have long been used to simulate fluid objects like clouds or smoke. After Luciani
(1995) who obtained visually convincing simulations of turbulent fluid flows using conditional viscous and
elastic bonds, we examined how our identification algorithm could reconstruct the parameters of such a
turbulent fluid model.

Figure 3: Four images of a jet penetrating into a fluid (frames nos. 100, 200, 300 and 400 from a sequence)

The main difference with the general model is the high number of bonds installed (and therefore the
computational load of the cost function) compared to standard flexible objects (about 80000 bonds in the 2-
D example above) even if not all are activated at the same time. With 100 individuals and after 1000
generations, the algorithm gives very good estimates of the initial parameters, with most estimation errors
lower than 1%.

gas visc gas visc
n.l

visc. dist jet visc jet visc
n,l,

jet visc.
dist

elast elast. dist

reference 2.5 1.25 1.5 4 2 2 2 1.1
estimated

value
2.499 1.248 1.500 3.962 2.052 2.000 2.000 1.100

estimation
error (%)

0.04 0.16 0.0 0.96 2.6 0.0 0.0 0.0

Table II:. Experimental results of identification algorithm

4.4 HORSE WALK AND ACTIVE MUSCLES

We processed kinematic data obtained from measurements on a race horse at a trot. The horse has been
fitted with 35 3-D markers sampled at 50Hz. Each leg includes 5 markers, the remaining 15 correspond to
the body and the head. Masses were estimated using standard veterinary data. Using linear springs gives a
good convergence, but the parameter values obtained give an unstable model. Introduction of dampers only
gives a slightly (2%) lower final cost function and better model stability. The visually still �rubber-like�
motion obtained strongly suggests introducing the equivalent of muscle control into the available bond
types and into the identification algorithm. This is why we have introduced active controllers into the
particle system. An �active muscle� consists of a visco-elastic bond, associated with a feed-forward neural
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controller whose inputs are the elongations and elongation speeds of other bonds. The internal parameters
of the neurones are identified using a straightforward extension of the evolution strategy described above.
Experiments on synthetic data which had been generated without neural controllers show little differences,
but experiments on the horse sequence show that with neural controllers, consistently lower cost values
(and therefore more accurate modelling) are obtained.

Figure 4: A mass-bond model with neural controllers

Figure 5: Log (cost function) without (thin) and with active muscles (bold), in function of the number of
generations.

5 CONCLUSION

The motion model identification technique presented in this paper has proven successful to reconstruct
model internal parameters from kinematic sequences, including non-linear, conditional, elastic or viscous
bonds in periodic or non-periodic objects, and thus provide the particle-based motion modelling tool with
the �measuring instrument� which should always be associated to a physical model. We also extended the
particle-based approaches to much complicated behaviours, like the living-beings motion, by enriching our
physical model with low-level control capabilities, here represented by the neural command system. For the
future we intend to develop low-level image processing methods to extract particles extracting particles�
trajectories from image sequences.
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