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Abstract.

The “fly algorithm” is a fast artificial evolution-based technique devised for the exploration of parameter space in pat-

tern recognition applications. In the application described, we evolve a population which constitutes a particle-based

three-dimensional representation of the scene. Each individual represents a three-dimensional point in the scene and

may be fitted with optional velocity parameters. Evolution is controlled by a fitness function which contains all pixel-

level calculations, and uses classical evolutionary operators (sharing, mutation, crossover). The combined individual

approach and low complexity fitness function allow fast processing. Test results and an application to mobile robotics

are presented.
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1 Introduction

Parameter-space vote approaches to computer vision and pattern recognition like the generalised Hough

transform [8] are limited by the number of parameters and the size of the search space. Artificial Evolution

[5][7][16] seen as a class of parameter space exploration techniques, provides successful solutions to some

image processing problems [13][17][19] but often suffer from the costly calculations needed if they have to

manipulate populations where each individual is in itself a complex description of the scene. The “Parisian”

approach [2][11][12] to artificial evolution introduces each individual as a part of the solution of the prob-

lem. Thus, the solution is represented by the total population or by a large part of it. The algorithm presented

in this paper uses 3-D points1 (‘flies’) as the population’s individuals, and evolves the population of flies us-

ing a pixel-based fitness function such that the flies concentrate onto the objects to be detected in the scene2

(Section 2). Section 3 shows an extension to stereo image sequences through the introduction of velocity pa-

rameters. An application to mobile robot obstacle avoidance is shown in Section 4.

2 Evolving Flies

2.1 Geometry and Fitness Function

A fly is defined as a 3-D point with coordinates . The coordinates of the fly’s projections are

in the image given by the left camera and  for the right camera. The cameras’ calibration parameters

�
x � y � z � �

xL � yL ��
xR � yR �

1 Particle swarms [15][4] also use 3-D points as primitives. They were designed as optimisation tools using a metaphor of
particles moving towards a target, using collective behaviours inspired by particle systems used in computer graphics. The
essential difference is that our approach is based on evolutionary operators (selection, mutation, crossover) which are not
used in particle swarm techniques. However one can outline some similarities between these two approaches: e.g. random
speeds vs. mutations, or mutual avoidance vs. sharing.

2 The tensor voting approach of Tang and Medioni [20] also uses a random distribution of 3-D points which do not evolve
but are only used to initialise the calculation of a dense tensor field.
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are known and so  may be easily calculated from  using projective geometry [6][9]. If the

fly is on the surface of an opaque object, then the corresponding pixels in the two images will normally have

the same grey level3. Conversely, if the fly is not on the surface of an object, thanks to the non-uniformity of

objects and illumination, the grey levels of its projections and their immediate neighbourhoods will be prob-

ably not identical. This is expressed as a fitness function used to control the evolution of the flies’ population

from random initial positions to converge onto the surfaces of the apparent objects.

xL � yL � xR � yR x � y � z
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Fig. 1. Pixels  and , projections of fly B, have identical grey levels, while pixels  and , projections of fly A,

which receive their illumination from two different physical points on the object’s surface, have different grey levels.

b1 b2 a1 a2

The fitness function evaluates the degree of similarity of the pixel neighbourhoods of the projections of the

fly onto each image. This ensures highest fitness values for the flies lying on the surface of an object :

f itness
�
indiv ��� G�

colours

���
i � j 	�
 N � L � xL  i � yL  j ��� R � xR  i � yR  j ��� 2

•  and  are the coordinates of the left and right projections of the current individual (see

Fig. 1),

�
xL � yL � �

xR � yR �

•  is the grey value of the left image at pixel  , similarly with  for the

right image.

L
�
xL  i � yL  j � �

xL  i � yL  j � R

•  is a neighbourhood introduced to obtain a more discriminant comparison of the fly’s projections.N

On colour images, square differences are calculated on each colour channel.

The normalizing factor is a local contrast measurement based on an image gradient calculation, giving high-

er fitness values to flies which project onto contrasted or textured areas of the images, and reducing the fit-

ness of those over uniform regions. Experiments showed that best results are obtained when is defined as

the square root of an image gradient norm such as Sobel’s [9]. Thus, highest fitness values are obtained for

flies whose projections have similarand significant pixel surroundings. Additionally, we modified the de-

nominator of the fitness function to suppress the continuous component and reduce its sensitivity to lower

spatial frequencies (e.g. due to different camera responses).

G

2.2 Artificial Evolution Operators

z-axis (depth)

clipping line

camera
left

truncated vision cone

x-axis

camera
right

Fig. 2. The fly population is initialised inside the intersection of the cameras 3-D fields of view.

3 Or the same colour components if colour images are used. This is essentially true with matt (Lambertian) surfaces where
scattering of incident light is isotropic. Usually, surfaces differ slightly from the Lambertian model, but this may be at least
partly taken into account with the fitness function (see the remark on low spatial frequencies, Section 2.1). Reflections
from glossy surfaces may give rise to virtual objects and wrong 3-D interpretation, as with other stereo analysis algorithms.

2



An individual’s chromosome is the triple  which contains the fly’s coordinates. The population is in-

itialised randomly inside the intersection of the cameras fields of view, from a given distance (clipping line)

to infinity (Fig. 2). The statistical distribution is chosen in order to obtain a uniformly distributed projections

in the left image. Their depth is chosen by uniformly distributing the values of  between zero and .

�
x � y � z �

z� 1 1/ dmin

Selection is elitist and deterministic. It ranks the flies according to their fitness values and retains the best in-

dividuals (typically 50%).

2-D sharing [7] reduces the fitness values of flies located in crowded areas to prevent them from getting

concentrated into a small number of maxima. It reduces each fly’s fitness by , where  is a “sharing

coefficient” and  the number of flies which project into the left image within a distance (“sharing ra-

dius”) from the given fly. We determined an empirical rule to choose a satisfactory sharing radius, consid-

ering that if the image is divided into squares of width  pixels, there should ideally be one fly per

square on average. Therefore  and:

K � N K

N R

R

2R � 1�
2R � 1� 2 � Nf lies � Npixels

R � 1
2

	
Npixels

Nf lies 
 1�
For example, on a  pixel image with 5000 flies, this gives 500 � 500 R � 3
Mutation allows an extensive exploration of the search space. It uses an approximation of a Gaussian ran-

dom noise added to the flies’ chromosome parameters . We chose standard deviations  equal

to , so that they are the same order of magnitude as the mean distance between neighbouring flies.

�
x � y � z � � x ��� y � � z

R

In real-world scenes, many objects contain straight lines or planar surfaces. We translated this geometrical

property into abarycentric crossover operator which builds an offspring randomly located on the line seg-

ment between its parents: the offspring of two flies  and  is the fly

defined by  . The weight  is chosen using a uniform random law in  4 .

F1

�
x1 � y1 � z1 � F2

�
x2 � y2 � z2 � F3

�
x3 � y3 � z3�

OF3

����� ��� OF1

����� � �
1 
 ��� OF2

����� � � 0� 1�
2.3 Results

2.3.1 Synthetic Images

Fig. 3. “Money” image, left Fig. 4. “Money” image, right.

Results are shown with the synthetic “Money” stereo image pair5 (Figs. 3 and 4) which allows easy readabil-

ity of results, as most objects are vertical. Fig. 5 shows convergence results using a 5000 individual popula-

tion, 50% mutation6 and 10% crossover rates7 at different stages of convergence. The scene is seen from

4  It is generally accepted that such a crossover operator has contractive properties which may be avoided by using a larger
interval. However the goal of this crossover operator is to fill in surfaces whose contours are easier to detect, rather than to
extend them. It is therefore not desirable to use coefficients allowing the centre of gravity to lie outside of the object’s
boundary. This is confirmed by most of our experiments showing that there is no benefit using a wider interval, unlike in
other applications of barycentric crossover.

5 “Money” colour image pair, 384� 288 pixels, ©INRIA - Mirages project.
6 Unusually high mutation rates give best results in Parisian evolution.
7 Experiments showed that best results are obtained with elitist selection, keeping the total mutation plus crossover rate
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above , showing the axes  (right) and  (camera axis, pointing towards the top of the page).x z

Fig. 5. Convergence results after 10 (left), 50 (centre) and 100 (right) generations. The line of flies which appears at the

background corresponds to the wooden panel in the image background, the four fly clusters in the foreground corre-

spond to the 4 coins. Note that the coin on the right is not vertical and gives a less distinct cloud.

2.3.2 Fine tuning the parameters

2.3.2.1 Sharing

Fig. 6. No sharing Fig. 7. Medium sharing

(radius 2, coefficient 0.2)

Fig. 8. High sharing

(radius 3, coefficient 0.5)

Figures 6 - 8 show how sharing affects the results on the same image data, showing the 1500 best in-

dividuals (30% of 5000) after 50 generations, with a mutation rate of 60%, no crossover and different shar-

ing coefficients. Top images show the fly distributions seen from above (plan view), bottom images are front

views (as seen from the camera) where darker pixels represents flies at shorter distances. Low sharing gives

unwanted fly concentrations into high gradient regions; high sharing coefficients tend to degrade the results.

2.3.2.2 Mutation and Crossover Rates

Fig. 9 shows typical average fitness evolution curves with different combinations of mutation and crossover

rates. Best results are obtained with mutation and crossover rates around 50% and 10% on interior scenes.

The bottom curve corresponds to a mutation-only evolution.

around 60%.
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generations

mean fitness

100 200 300 400

2.5

3.0

60%mutation, 0% crossover

50% mutation, 10% crossover

40% mutation, 20% crossover

Fig. 9. Evolution of average fitness values for a 5000 individual population using three different combinations of muta-

tion and crossover rates.

2.3.2.3 Small Populations

When smaller populations are used (e.g. to reduce computation time) the sharing coefficient must be in-

creased to ensure a fair repartition of the population, as seen in Section 2.2. In addition, higher crossover

rates then allow more reliable object detection (see typical example on Fig. 10). A fair all-purpose compro-

mise is around 10-20%, depending on the importance of planar objects in the scene.

mutation 60%, no crossover mutation 40%, crossover 20% mutation 20%, crossover 40%

Fig. 10. Using different crossover rates with a small population:1000 flies, 100 generations

Experiments on real data show that the choice of population size depends on processing time constraints and

on the level of detail required in the application (size of objects to be detected (see details below).

2.3.3 Results on real images

We tested the algorithm on monochrome stereo 768 �  576 image pairs of interior scenes (Figs.11 - 12). Typ-

ical results are shown on Fig.13, using similar genetic parameters (5000 flies, 100 generations, 40% muta-

tion, 20% crossover, sharing radius 2, sharing coefficient 0.3). One can see the two sides of the cabinet, the

beginning of the wall on the right and the front half-circle of the stool in spite of its small number of pixels.

stool

cabinet

wall

     Fig. 11. Left image          Fig. 12. Right image     Fig. 13. Results and plan view

3 Detecting mobile obstacles: real time and dynamic flies

We have extended the algorithm to process stereo pair sequences taken by moving cameras.

3.1 Random method

The random approach consists in keeping the same population evolving through frame changes. Thus, only

the images (and therefore the parameters used by the fitness function) are modified while the fly population

evolves. When motion is slow enough, using the results of the last step speeds up convergence significantly
5



compared to using a totally new random population. This method may be seen as the introduction of a col-

lective memory of space, exploiting the similarity between consecutive scenes. It does not alter much the

simplicity of the static method and requires minimal algorithm changes. An extra mutation is applied to

flies’ positions at each frame change. To improve detection of new objects appearing in the field of view, we

introduced an extra mutation operator, immigration, which creates new flies randomly in a way similar to

the procedure already used to first initialise the population: used with a low probability (1% to 5%) this fa-

vours a convenient exploration of the whole search space.

3.2 Forward method

In order to process faster motion, we introduced an extended chromosome, which contains both position and

speed coordinates in the cameras’ mobile coordinate system, and modified the fitness and genetic operators

accordingly. To exploit the redundancy of data and the likely continuity of velocities in most applications,

the most handy approach (“forward approach”) is the following. Each fly’s genome is the 6-uple

, At the first frame of the sequence, the positions  are evolved in the usual way, and the

velocities  are initialised randomly. Then for the following frames in the sequence, knowing the fly’s

genome  at instant , we are able to extrapolate its genome at instant  as

, and now evolve the speed components  . The two possible fitness

functions we use are described in Section 3.5. At the end of this step, the flies’ coordinates will be updated

to  , so that the population is ready for the next step.

�
x � y � z � x��� y��� z��� x � y � z

x��� y��� z��
x � y � z � x��� y��� z��� t t �
	 t� � x��� y��� z��x � x��	 t � y � y�	 t � z � z��	 t x��� y��� z�

x � x��	 t � y � y�	 t � z � z��	 t

This method may be considered as the introduction of a speed memory in flies. It does not involve important

changes in the program, except that evolution is applied to velocities rather than positions.

3.3 Backward method

To better exploit time redundancy, we have introduced  the “backward” approach: to evaluate a fly with ge-

nome , containing position and speed components at instant , we calculate both the coher-

ence of  with the current image pair and the coherence of  with the pre-

vious images. This can be done two different ways, as detailed in Section 3.5.

�
x � y � z � x��� y��� z��� t�

x � y � z � �
x � x�	 t � y � y��	 t � z � z��	 t �

This approach means that the set of pairs (old position, current position) and therefore all six parameters of

the genome  are explored more systematically than with the forward method. It implies that

the algorithm has been thoroughly rewritten. The results given in Section 3.8 allow a qualitative comparison

of these approaches.

�
x � y � z � x��� y��� z���

3.4 Dynamic fitness functions: fitness consensus or grey level comparison?

The static fitness function described in Section 2.1 only involves the position parameters  of a fly. It

is now necessary to define a “dynamic fitness function” to take into account two consecutive stereo pairs and

evaluate a 6-component fly genome.

�
x � y � z �

The first method (“fitness consensus”) consists in calculating the static fitness of the fly’s old position

 on the old images, and calculating the static fitness of its new position

on the new images; then a fly will be given a high dynamic fitness only if both static fitness values are high.

For the results not to be biassed by possible different sharing values, only the new position of the fly is used

to calculate both fitness values, and the dynamic fitness is defined as the product of the new static fitness

with a Gaussian function of the difference between old and new fitness:

�
x � x�	 t � y � y��	 t � z � z��	 t � �

x � y � z �
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dynamic f itness � f itness1 exp

��� �
f itness1

�
f itness2 � 2

2s2 �
where the parameter  allows adjustment of tolerance on fitness dispersion. The flies’ fitness values are easi-

ly stored from the preceding generation.

s

The second method consists in comparing the grey levels of all 4 images8 (“grey level comparison”) from

two consecutive stereo pairs, and only give high fitness values to flies whose 6 coordinates give similar grey

levels on all 4 images. We built the dynamic fitness function as the inverse of the sum of the four grey level

differences: old left vs. new left, old right vs. new right, old left vs. old right, new left vs. new right.

The first two terms will give a penalty to flies with wrong speeds, the last ones to flies with wrong positions:

we had to introduce and adjust weight coefficients experimentally.

3.5 Genetic operators

In order to use the static version of the algorithm with image sequences, we introduced the “immigration”

operator, which helps the algorithm take into account new objects that would appear in the scene but would

not be useful in processing static scenes.

In the dynamic version, the genetic operators: immigration, mutation and barycentric crossover,  are similar

to those used in the static version. Immigration again creates totally new individuals located in the inter-

section of the two cameras’ fields of view, and speeds randomly chosen in a given domain. Mutation now

affects the norm and direction of the speed vector.

3.6 Initialising the population

The algorithm is initialised using its static version on the first frame. At the second frame it is necessary to

initialise the velocities as well, which is left to the user. In the examples below, the simulated robot’s speed

was known and used to help initialise the flies’ velocities. Accurate a priori knowledge on speed allows re-

ducing the variance of the initial distribution, privilege local research and help convergence.

3.7 Results

Results in Figures 14 - 16 have been obtained with the same sequence of 6 image pairs of an interior scene.

The order of magnitude  of the robot’s speed was known, and used to initialise the flies’ depth derivatives

using a uniform distribution in the interval . The other components  have been initialised with a

Gaussian distribution around . Unless otherwise stated, figures show the results obtained at the 6th image,

projected on the horizontal plane , the camera pointing towards the top of the page. Velocity images

(Figures 15 - 16) show the projections of the velocity vectors on the horizontal plane .

V z�� �
3V
2 	 3V

2 
 x� 	 y�
0 �

x 	 z � 
x� 	 z���

Fig. 14 : Random method: results on images 2, 4, 6 of the sequence.

8 It is also possible to apply this method using a single moving camera, but its accuracy may then be limited around the focus
of expansion if the direction of motion is close to the camera axis.
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Fig. 15 : Forward approach, evaluation by fitness comparison: results on frames 2 (left) and 6 (right). Second and fourth

images show velocities (magnified).

Fig. 16 : Grey level comparison on 4 images: forward approach (left) and backward approach (right). With both meth-

ods, improvement on positions is obvious. The backward approach gives better velocities but needs longer calculations.

Concerning positions, results are more convincing when the fitness function is based on the comparison of

grey levels on 4 images. The backward method gives a better convergence of speeds, and therefore possibly

better results on long image sequences when motion is smooth enough, but uses more computing resources.

4 Application to robot obstacle avoidance

The unusual way the scene is described using the fly algorithm (compared to more classical stereovision al-

gorithm used in mobile robotics), led us to adapt a classical robot navigation method in order to use the re-

sults of the fly algorithm as input data, and build a simulator.

Fig. 17 : the scene seen by the robot. Fig. 18 : the robot facing a wall and a

door aperture. White dots represent the flies

memorised from the preceding positions.

To keep the potential speed benefit of the fly algorithm, we chose to implement a fast potential-based meth-

od [10][21]. We define a force derived from the sum of an attractive (the target) and a repulsive (the flies)
8



potential  , acting as a steering command. The attractive force  points towards the target and

has a constant amplitude except in the close neighbourhood of the target. The repulsive force  takes into

account all the flies. Our internal 2-D representation of the robot’s environment is inspired by Martin &

Moravec’s robot evidence grids [14]: each cell concentrates the information contained in the flies it contains

and generates its contribution to the repulsive force, proportionally to the sum of the flies’ fitness values.

The complete simulator includes: a stereo camera pair simulator (using PovRay)(Figure 17), the fly algo-

rithm, the potential-based planner described above, and a simple kinetic robot simulator. Blockage situations

corresponding to local potential minima, are solved using two heuristics [1] which create a new force attract-

ing the robot out of the potential minimum (random walk and wall following methods) (Figures 18 - 22).

F��� Fa

� � Fr

�
Fa

�

Fr

�

Fig. 19 : blocked situation Fig. 20 : resolution using

secondary targets

Fig. 21 : another trajectory generated

using secondary targets

Fig. 22 : a trajectory generated by

wall following

5 Conclusion

It is often considered that artificial evolution is slow and not suited to real-time applications. However,

• Evolution strategies are generally capable of adaptation, i.e. to cope with modifications of the fitness

during the algorithm’s execution [18]. Real time refers to the ability of the system to exploit input

data as soon as they become available, and provide the user with suitable updated results at any time.

• With conventional image processing algorithms [9][3], a frame must have been fully scanned before

the algorithm can calculate and deliver the result. The segmentation-free fly algorithm tolerates data

updating during its execution and is always using freshly updated data. This feature can be exploited

using CMOS camera technogy allowing asynchronous data reading.

• The fly algorithm’s results are updated continuously (at the rate of generations), which enables the

user (e.g. a robot path planifier) to react faster to external events.

• The main time-consuming task in artificial evolution is usually calculating the fitness function. Here,

the “Parisian approach” allows to spread the scene representation over a large number of extremely

simple primitives, hence a simple fitness function and a fast algorithm.

Fairly unusual in image processing, the program’s structure is largely application-independent, as most of
9



the problem-specific knowledge is expressed in the fitness function, enabling easy transfer to other applica-

tions. We are currently implementing the method described in this paper into ENSTA’s mobile robot project,

and are developing an application of the same pattern recognition technique to medical image

reconstruction.

Average processing time is from 7 to 25 milliseconds per generation for the random method, on a 800MHz

PentiumIII PC, Linux, gcc, and may go up to about 50 milliseconds with the backward method, depending

on population size and genetic parameters. Detailed results may be found on the site:
http://www.ensta.fr/~louchet/FlyBenchmark.html
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